Cut ‘visual clutter’ to help MCI & Alzheimer’s

October, 2012

A small study shows that those with MCI perform poorly on a visual discrimination task under high interference conditions, suggesting that reducing interference may improve cognitive performance.

Memory problems in those with mild cognitive impairment may begin with problems in visual discrimination and vulnerability to interference — a hopeful discovery in that interventions to improve discriminability and reduce interference may have a flow-on effect to cognition.

The study compared the performance on a complex object discrimination task of 7 patients diagnosed with amnestic MCI, 10 older adults considered to be at risk for MCI (because of their scores on a cognitive test), and 19 age-matched controls. The task involved the side-by-side comparison of images of objects, with participants required to say, within 15 seconds, whether the two objects were the same or different.

In the high-interference condition, the objects were blob-like and presented as black and white line-drawings, with some comparison pairs identical, while others only varied slightly in either shape or fill pattern. Objects were rotated to discourage a simple feature-matching strategy. In the low-interference condition, these line-drawings were interspersed with color photos of everyday objects, for which discriminability was dramatically easier. The two conditions were interspersed by a short break, with the low interference condition run in two blocks, before and after the high interference condition.

A control task, in which the participants compared two squares that could vary in size, was run at the end.

The study found that those with MCI, as well as those at risk of MCI, performed significantly worse than the control group in the high-interference condition. There was no difference in performance between those with MCI and those at risk of MCI. Neither group was impaired in the first low-interference condition, although the at-risk group did show significant impairment in the second low-interference condition. It may be that they had trouble recovering from the high-interference experience. However, the degree of impairment was much less than it was in the high-interference condition. It’s also worth noting that the performance on this second low-interference task was, for all groups, notably higher than it was on the first low-interference task.

There was no difference between any of the groups on the control task, indicating that fatigue wasn’t a factor.

The interference task was specifically chosen as one that involved the perirhinal cortex, but not the hippocampus. The task requires the conjunction of features — that is, you need to be able to see the object as a whole (‘feature binding’), not simply match individual features. The control task, which required only the discrimination of a single feature, shows that MCI doesn’t interfere with this ability.

I do note that the amount of individual variability on the interference tasks was noticeably greater in the MCI group than the others. The MCI group was of course smaller than the other groups, but variability wasn’t any greater for this group in the control task. Presumably this variability reflects progression of the impairment, but it would be interesting to test this with a larger sample, and map performance on this task against other cognitive tasks.

Recent research has suggested that the perirhinal cortex may provide protection from visual interference by inhibiting lower-level features. The perirhinal cortex is strongly connected to the hippocampus and entorhinal cortex, two brain regions known to be affected very early in MCI and Alzheimer’s.

The findings are also consistent with other evidence that damage to the medial temporal lobe may impair memory by increasing vulnerability to interference. For example, one study has found that story recall was greatly improved in patients with MCI if they rested quietly in a dark room after hearing the story, rather than being occupied in other tasks.

There may be a working memory component to all this as well. Comparison of two objects does require shifting attention back and forth. This, however, is separate to what the researchers see as primary: a perceptual deficit.

All of this suggests that reducing “visual clutter” could help MCI patients with everyday tasks. For example, buttons on a telephone tend to be the same size and color, with the only difference lying in the numbers themselves. Perhaps those with MCI or early Alzheimer’s would be assisted by a phone with varying sized buttons and different colors.

The finding also raises the question: to what extent is the difficulty Alzheimer’s patients often have in recognizing a loved one’s face a discrimination problem rather than a memory problem?

Finally, the performance of the at-risk group — people who had no subjective concerns about their memory, but who scored below 26 on the MoCA (Montreal Cognitive Assessment — a brief screening tool for MCI) — suggests that vulnerability to visual interference is an early marker of cognitive impairment that may be useful in diagnosis. It’s worth noting that, across all groups, MoCA scores predicted performance on the high-interference task, but not on any of the other tasks.

So how much cognitive impairment rests on problems with interference?

Reference: 

Newsome, R. N., Duarte, A., & Barense, M. D. (2012). Reducing Perceptual Interference Improves Visual Discrimination in Mild Cognitive Impairment : Implications for a Model of Perirhinal Cortex Function, Hippocampus, 22, 1990–1999. doi:10.1002/hipo.22071

Della Sala S, Cowan N, Beschin N, Perini M. 2005. Just lying there, remembering: Improving recall of prose in amnesic patients with mild cognitive impairment by minimising interference. Memory, 13, 435–440.

Related News

A certain level of mental decline in the senior years is regarded as normal, but some fortunate few don’t suffer from any decline at all.

Previous research has found that carriers of the so-called

Obesity has been linked to cognitive decline, but a new study involving 300 post-menopausal women has found that higher BMI was associated with higher cognitive scores.

In the last five years, three studies have linked lower neighborhood socioeconomic status to lower cognitive function in older adults. Neighborhood has also been linked to self-rated health, cardiovascular disease, and mortality.

A telephone survey of around 17,000 older women (average age 74), which included questions about memory lapses plus standard cognitive tests, found that getting lost in familiar neighborhoods was highly associated with cognitive impairment that might indicate Alzheimer’s.

The very large and long-running Women's Health Initiative study surprised everyone when it produced its finding that hormone therapy generally increased rather than decreased stroke risk as well as other health problems.

Research has shown that younger adults are better decision makers than older adults — a curious result. A new study tried to capture more ‘real-world’ decision-making, by requiring participants to evaluate each result in order to strategize the next choice.

In a study involving 115 seniors (average age 81), those who participated in a six-week, 12-session memory training program significantly improved their verbal memory.

Following a 1994 study that found that errorless learning was better than trial-and-error learning for amnesic patients and older adults, errorless learning has been widely adopted in the rehabilitation industry.

In the study, 18 children (aged 7-8), 20 adolescents (13-14), and 20 young adults (20-29) were shown pictures and asked to decide whether it was a new picture or one they had seen earlier.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news