Brain continues to develop well into our 20s

October, 2011

A new study shows that the wiring that connects the frontal lobes to other parts of the cerebral cortex continues to develop well into young adulthood — except for a small minority that show degradation.

Brain imaging data from 103 healthy people aged 5-32, each of whom was scanned at least twice, has demonstrated that wiring to the frontal lobe continues to develop after adolescence.

The brain scans focused on 10 major white matter tracts. Significant changes in white matter tracts occurred in the vast majority of children and early adolescents, and these changes were mostly complete by late adolescence for projection and commissural tracts (projection tracts project from the cortex to non-cortical areas, such as the senses and the muscles, or from the thalamus to the cortex; commissural tracts cross from one hemisphere to the other). But association tracts (which connect regions within the same hemisphere) kept developing after adolescence.

This was particularly so for the inferior and superior longitudinal and fronto-occipital fascicule (the inferior longitudinal fasciculus connects the temporal and occipital lobes; the superior longitudinal fasciculus connects the frontal lobe to the occipital lobe and parts of the temporal and parietal lobes). These frontal connections are needed for complex cognitive tasks such as inhibition, executive functioning, and attention.

The researchers speculated that this continuing development may be due to the many life experiences in young adulthood, such as pursing post-secondary education, starting a career, independence and developing new social and family relationships.

But this continuing development wasn’t seen in everyone. Indeed, in some people, there was evidence of reductions, rather than growth, in white matter integrity. It may be that this is connected with the development of psychiatric disorders that typically develop in adolescence or young adulthood — perhaps directly, or because such degradation increases vulnerability to other factors (e.g., to drug use). This is speculative at the moment, but it opens up a new avenue to research.

Reference: 

[2528] Lebel, C., & Beaulieu C.
(2011).  Longitudinal Development of Human Brain Wiring Continues from Childhood into Adulthood.
The Journal of Neuroscience. 31(30), 10937 - 10947.

Related News

A study involving 629 12th-grade students from three Los Angeles-area high schools has revealed that, across both genders and all ethnicities, adolescents with more in-school friends, compared with out-of-school friends, had higher grade point averages.

A national Swedish study involving the 1.16 million children in a national birth cohort identified nearly 8000 on the country's Prescribed Drug Register as using a prescription for ADHD medication (and thus assumed to suffer from severe ADHD).

Data from the same long-running study (the NICHD Study of Early Child Care and Youth Development), this time involving 1,364 youth (followed since birth), found that teens who had spent the most hours in non-relative child care in their first 4½ years reported a slightly greater tendency toward i

It is well known that the onset of puberty marks the end of the optimal period for learning language and certain spatial skills, such as computer/video game operation.

Although we initially tend to pay attention to obvious features such as hair, it has been long established that familiar faces are recognized better from their inner (eyes, nose, mouth) rather than their outer (hair, hairline, jaw, ears) parts1.

Seventh graders given 20 mg zinc, five days per week, for 10 to 12 weeks showed improvement in cognitive performance, responding more quickly and accurately on memory tasks and with more sustained attention, than classmates who received no additional zinc.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news