Better physical fitness and lower aortic stiffness key to slower brain aging

  • A study found that physical fitness & arterial stiffness accounted for a third of the cognitive differences between older adults, completely erasing age as a factor.

An Australian study involving 102 older adults (60-90) has concluded that physical fitness and arterial stiffness account for a great deal of age-related memory decline.

The study that, while both physical fitness and aortic stiffness were associated with spatial working memory performance, the two factors affected cognition independently. More importantly, and surprisingly, statistical modelling found that, taking BMI and gender into account, fitness and aortic stiffness together explained a third (33%) of the individual differences in spatial working memory — with age no longer predicting any of the differences.

While physical fitness didn’t seem to affect central arterial stiffness, the researchers point out that only current fitness was assessed and long term fitness might be a better predictor of central arterial stiffness.

It's also worth noting that only one cognitive measure was used. However, this particular measure should be a good one for assessing cognition untainted by the benefits of experience — a purer measure of the ability to process information, as it were.

It would also be interesting to extend the comparison to younger adults. I hope future research will explore these aspects.

Nevertheless, the idea that age-related cognitive decline might be largely, or even entirely, accounted for by one's physical fitness and the state of one's arteries, is an immensely appealing one.

Fitness was assessed with the Six-Minute Walk test which involved participants walking back and forth between two markers placed 10 metres apart for six minutes. Only participants who completed the full six minutes were included in the analysis.

https://www.eurekalert.org/pub_releases/2018-06/ip-bpf061118.php

Reference: 

Related News

A new study finds out why curcumin might help protect against dementia, and links two factors associated with Alzheimer’s and Parkinson’s diseases: DNA damage by reactive oxygen species (ROS), and excessive levels of copper and iron in parts of the brain.

Some epidemiological studies have showed that people who smoke tend to have lower incidences of Parkinson's disease and Alzheimer's disease; this has been widely attributed to nicotine. However, nicotine's harmful effects make it a poor drug candidate.

A study involving 70 older adults (60-83) has found that those with at least ten years of musical training performed the best on cognitive tests, followed by those with one to nine years of musical study, with those with no musical training trailing the field.

A study following 837 people with

Supporting earlier research, a study involving 8,534 older adults (65+; mean age 74.4) has found those who were obese in middle age had almost four times (300%) more risk of developing dementia. Those who were overweight in middle age had a 1.8 times (80%) higher risk of developing dementia.

A study in which mice were exposed to polluted air for three 5-hour sessions a week for 10 weeks, has revealed that such exposure damaged neurons in the

Adding to the growing evidence that social activity helps prevent age-related cognitive decline, a longitudinal study involving 1,138 older adults (mean age 80) has found that those who had the highest levels of social activity (top 10%) experienced only a quarter of the rate of cognitive declin

A study involved 117 older adults (mean age 78) found those at greater risk of coronary artery disease had substantially greater risk for decline in verbal fluency and the ability to ignore irrelevant information. Verbal memory was not affected.

A study involving 200 older adults (70+) experiencing a stay in hospital has found that at discharge nearly a third (31.5%) had previously unrecognized low cognitive function (scoring below 25 on the MMSE if high-school-educated, or below 18 if not).

From the Whitehall II study, data involving 5431 older participants (45-69 at baseline) has revealed a significant effect of midlife sleep changes on later cognitive function. Sleep duration was assessed at one point between 1997 and 1999, and again between 2002 and 2004.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news