Animal studies indicate caffeine may slow dementia and cognitive decline but human studies less conclusive

July, 2010
  • Several recent studies and reviews suggest that the benefits of caffeine for age-related cognitive impairment and dementia are limited. It may be that the association only exists for women.

A special supplement in the Journal of Alzheimer's Disease focuses on the effects of caffeine on dementia and age-related cognitive decline. Here are the highlights:

A mouse study has found memory restoration and lower levels of amyloid-beta in Alzheimer’s mice following only 1-2 months of caffeine treatment. The researchers talk of “ a surprising ability of moderate caffeine intake to protect against or treat AD”, and define moderate intake as around 5 cups of coffee a day(!).

A review of studies into the relation between caffeine intake, diabetes, cognition and dementia, concludes that indications that coffee/caffeine consumption is associated with a decreased risk of Type 2 diabetes and possibly also with a decreased dementia risk, cannot yet be confirmed with any certainty.

A study involving 351 older adults without dementia found the association between caffeine intake and cognitive performance disappeared once socioeconomic status was taken into account.

A study involving 641 older adults found caffeine consumption was significantly associated with less cognitive decline for women only. Supporting this, white matter lesions were significantly fewer in women consuming more than 3 units of caffeine per day (after adjustment for age) than in women consuming less.

A Portuguese study involving 648 older adults found that caffeine intake was associated with a lower risk of cognitive decline in women, but not significantly in men.

A review of published studies examining the relation between caffeine intake and cognitive decline or dementia shows a trend towards a protective effect of caffeine, but because of the limited number of epidemiological studies, and the methodological differences between them, is unable to come up with a definitive conclusion.

A review of published epidemiological studies looking at the association between caffeine intake and Parkinson’s Disease confirms that higher caffeine intake is associated with a lower risk of developing Parkinson’s Disease (though this association may be stronger for men than women). Other studies provide evidence of caffeine’s potential in treatment, improving both the motor deficits and non-motor symptoms of Parkinson’s.

Reference: 

Arendash, G.W. & Cao, C. Caffeine and Coffee as Therapeutics Against Alzheimer’s Disease. Journal of Alzheimer's Disease, 20 (Supp 1), 117-126.
Biessels, G.J. Caffeine, Diabetes, Cognition, and Dementia. Journal of Alzheimer's Disease, 20 (Supp 1), 143-150.
Kyle, J., Fox, H.C. & Whalley, L.J. Caffeine, Cognition, and Socioeconomic Status. Journal of Alzheimer's Disease, 20 (Supp 1), 151-159.
Ritchie, K. et al. Caffeine, Cognitive Functioning, and White Matter Lesions in the Elderly: Establishing Causality from Epidemiological Evidence. Journal of Alzheimer's Disease, 20 (Supp 1), 161-161
Santos, C. et al. Caffeine Intake is Associated with a Lower Risk of Cognitive Decline: A Cohort Study from Portugal. Journal of Alzheimer's Disease, 20 (Supp 1), 175-185.
Santos, C. et al. Caffeine Intake and Dementia: Systematic Review and Meta-Analysis. Journal of Alzheimer's Disease, 20 (Supp 1), 187-204.
Costa, J. et al. Caffeine Exposure and the Risk of Parkinson’s Disease: A Systematic Review and Meta-Analysis of Observational Studies. Journal of Alzheimer's Disease, 20 (Supp 1), 221-238.
Prediger, R.D.S. Effects of Caffeine in Parkinson’s Disease: From Neuroprotection to the Management of Motor and Non-Motor Symptoms. Journal of Alzheimer's Disease, 20 (Supp 1), 205-220.

Related News

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news