Problems

Health in Aging

Short-term declines in cognitive function can occur in elderly subjects after surgery, and persists in a small percentage.

Heart bypass surgery in particular is associated with cognitive decline - estimates of its prevalence range from 33% to 82%. This decline may persist in as many as 42% of patients. Age and level of education are both factors in determining the likelihood of long-term decline. The presence of a gene (apolipoprotein E4) carried by some 25% of the population may also increase the likelihood of decline after bypass surgery. There also seems to be a link between post-operative fever and cognitive decline. Long-term decline in cognitive function may be more a result of cardiovascular risk factors than the surgery itself.

High blood pressure in those over 60 seems to be associated with greater risk of cognitive decline.

High blood pressure and other circulatory problems, such as cardiovascular risk factors and diabetes, are linked to cognitive decline, perhaps through causing abnormalities in the white matter of elderly persons' brains.

Those with the gene ApoE4 also appear to have more difficulty recovering from traumatic brain injury.

Two drugs used for Alzheimer's have also been found to help those suffering from dementia following stroke.

A specific skills approach is having some success in helping those who suffer from attention problems following stroke.

 

See separate pages for

Depression

Diabetes

Heart health

Inflammation & infection

Sleep problems

Stroke

Surgery

Older news items (pre-2010) brought over from the old website

Common medications associated with cognitive decline in elderly

A study of over 500 relatively healthy men aged 65 years or older with high blood pressure has found that chronic use of medications with anticholinergic properties was associated with impairment in verbal memory and the ability to perform daily living tasks. The degree of impairment increased proportionally to the total amount of drug exposure. This effect was independent of age, education, morbidities, and severity of hypertension.

Han, L., Agostini, J.V. & Allore, H.G. 2008. Cumulative Anticholinergic Exposure Is Associated with Poor Memory and Executive Function in Older Men. Journal of the American Geriatrics Society, 56 (12), 2203-2210.

http://www.eurekalert.org/pub_releases/2009-01/w-cma012609.php

Using anti-cholinergic drugs may increase cognitive decline

The Religious Orders Study has thrown up more data, this time on the subject of anticholinergic medication. Over an eight year period, 679 of the 870 elderly participants took at least one medication with anticholinergic properties. The study found those people who took anticholinergic drugs saw their rate of cognitive function decline 1.5 times as fast as those people who did not take the drugs. Anticholinergic properties are found in many medicines, such as medicines for stomach cramps, ulcers, motion sickness, and urinary incontinence.

The research was presented at the American Academy of Neurology Annual Meeting in Chicago, April 12–19.

http://www.eurekalert.org/pub_releases/2008-04/aaon-uad040208.php

Injection of human umbilical cord blood helps aging brain

A rat study has found that a single intravenous injection of human umbilical cord blood mononuclear cells in aged rats significantly improved the microenvironment of the aged hippocampus and rejuvenated the aged neural stem/progenitor cells. The increase in neurogenesis seemed to be due to a decrease in inflammation. The results raise the possibility of cell therapy to rejuvenate the aged brain.

Bachstetter, A.D. et al. 2008. Peripheral injection of human umbilical cord blood stimulates neurogenesis in the aged rat brain. BMC Neuroscience, 9, 22. 

http://www.physorg.com/news124384387.html

Relationship between statins and cognitive decline more complex than thought

Previous studies of a link between statins (which protect against cardiovascular disease) and cognitive decline have produced inconsistent results. A three year epidemiological study of older African Americans has now found cognitive decline in statin users was less than those who did not take statins, but those who continued to take statins from 2001 to 2004 had greater cognitive decline than those who were taking statins in 2001 but were no longer taking them in 2004. The finding that the benefit is stronger for those who had discontinued use than for continuous users points to a complex association between statins and cognitive decline.

Szwast, S.J. et al. 2007. Association of statin use with cognitive decline in elderly African Americans Neurology, 69, 1873-1880. 

http://www.eurekalert.org/pub_releases/2007-11/iu-rbs110207.php

High-normal uric acid linked with mild cognitive impairment in the elderly

A study of 96 older adults has found that those with uric-acid levels at the high end of the normal range had the lowest scores on tests of mental processing speed, verbal memory and working memory. The correlation persisted even when controlled for age, sex, weight, race, education, diabetes, hypertension, smoking and alcohol abuse. Uric acid levels increase with age, and higher levels are linked with high blood pressure, atherosclerosis, Type 2 diabetes and the "metabolic syndrome" of abdominal obesity and insulin resistance — all known risk factors for dementia. Because uric acid levels are so easily tested, the finding may suggest a valuable biological marker for very early cognitive problems in old age.

Schretlen, D.J. et al. 2007. Serum Uric Acid and Cognitive Function in Community-Dwelling Older Adults. Neuropsychology, 21 (1)

http://www.eurekalert.org/pub_releases/2007-01/apa-hua122706.php

Drug reverses aging effect on memory process

Rat studies suggest that a drug made to enhance memory triggers a natural mechanism in the brain that fully reverses age-related memory loss, even after the drug itself has left the body. In middle-aged rats given ampakines twice a day for four days, there was a significant increase in the production of brain-derived neurotrophic factor (BDNF), a protein known to play a key role in memory formation, and in long-term potentiation (LTP), the process by which the connection between the brain cells is enhanced and memory is encoded. Deficits in LTP occur with age. This restoration of LTP was found in the brains even after the ampakines had been cleared from the animals' bodies.

Rex, C.S. et al. 2006. Restoration of Long-Term Potentiation in Middle-Aged Hippocampus After Induction of Brain-Derived Neurotrophic Factor. Journal of Neurophysiology, 96, 677-685.

http://www.sciencedaily.com/releases/2006/07/060727154900.htm

Nicotine patch may alleviate 'senior moments'

A small preliminary clinical trial has found that four weeks of nicotine skin patches helped decision-making and attention in people with age-associated memory impairment (the mildest form of cognitive impairment in seniors). Given the health risks of smoking, and health risks associated with nicotine patches, it is too early to recommend the use of nicotine to improve memory, however. Nicotine mimics the brain chemical acetylcholine, a nerve signal that plays a role in learning and memory.

White, H.K. & Levin, E.D. 2004. Psychopharmacology

http://www.eurekalert.org/pub_releases/2003-12/dumc-npm120303.php

Statins associated with rare cases of temporary amnesia

Two recent studies have documented cases of amnesia and other nervous-system side effects after taking statins, the cholesterol-lowering drugs being prescribed to millions of people at risk of heart disease. It is emphasized that this is a rare problem, but given the vast numbers of people taking statins, it might still add up to a significant number of problems.

http://www.eurekalert.org/pub_releases/2003-12/ns-ymw120303.php

False Memories

Older news items (pre-2010) brought over from the old website

Brain wiring creates false memories

We know how easily we can form false memories, but now a new study reveals why some people more easily form these than others. The study had 48 students read lists of semantically related words in which one word which belonged there was absent. They were then asked to recall as many of the words as they could. Those who recalled more of the absent words, and thus assumed to be more prone to false memories, were found to have higher-quality white-matter connections in the superior longitudinal fascicle (which connects frontoparietal structures, and is associated with gist-based learning), while those who were more accurate had higher-quality white-matter connections in the inferior longitudinal fascicle (the major connective pathway of the medial temporal lobe). The findings indicate that individual differences in white matter microstructure underlie true and false memory performance.

Fuentemilla, L. et al. 2009. Individual Differences in True and False Memory Retrieval Are Related to White Matter Brain Microstructure. The Journal of Neuroscience, 29(27), 8698-8703.

http://www.newscientist.com/article/mg20327164.800-brain-wiring-creates-false-memories.html

Eyewitness memory even more vulnerable than expected

We know how easy it is to distort someone’s memory of an event by providing false information, but it’s always been thought that getting people to recall what happened immediately after the event would provide some protection from the misinformation effect. Now a new study has found that those who took a recall test immediately after watching an episode of “24” were in fact more vulnerable to misinformation that was later provided. In fact, they were twice as likely to remember false information that was given after the test compared to those who weren’t given the immediate test. It’s suggested that recently recalled information is particularly vulnerable to distortion.

Chan, J.C.K., Thomas, A.K. & Bulevich, J.B. 2009. Recalling a Witnessed Event Increases Eyewitness Suggestibility: The Reversed Testing Effect. Psychological Science, 20 (1), 66-73.

http://www.physorg.com/news152378697.html
http://www.eurekalert.org/pub_releases/2009-01/afps-dis012809.php

Brain region involved in false memories identified

We’re all susceptible to false memories, but brain damage can produce false memories beyond the normal level. The pathological production of false memories is known as confabulation, and because the patients who suffer this have showed damage to various parts of the brain, the cause has been unclear until now. But a new study of 50 patients has found the common element: all those who confabulated shared damage to the inferior medial prefrontal cortex.

Turner, M.S. et al. 2008. Confabulation: Damage to a specific inferior medial prefrontal system. Cortex, 44 (6), 637-648.

http://www.eurekalert.org/pub_releases/2008-05/e-wym052808.php

Brain waves distinguish false memories from true

An imaging study of 52 neurosurgical patients being treated for drug-resistant epilepsy has found that a fast brain wave, known as the gamma rhythm, increased when participants studied a word that they would later successfully recall. The same gamma waves also increased in the half-second prior to participant’s correctly recalling an item. In other words, the gamma waves predicted whether or not an item that was about to be recalled was previously studied.

Sederberg, P.B. et al. 2007. Gamma Oscillations Distinguish True From False Memories. Psychological Science, 18 (11), 927–932.

http://www.eurekalert.org/pub_releases/2007-10/uop-prp102307.php

Brain activity distinguishes false from true recollection

Although memory confidence and accuracy tend to be positively correlated, people sometimes remember with high confidence events that never happened. A new imaging study reveals that, in cases of high confidence, responses were associated with greater activity in the medial temporal lobe when the event really happened, but with greater activity in the frontoparietal region when the memory was false. Both of these regions are involved in event memory, but the medial temporal lobe focuses on specific facts about the event, while the fronto-parietal network is more likely to process the global gist of the event.

Kim, H. & Cabeza, R. 2007. Trusting Our Memories: Dissociating the Neural Correlates of Confidence in Veridical versus Illusory Memories. Journal of Neuroscience, 27, 12190–12197.

http://www.physorg.com/news113671556.html

Discriminating fact from fiction in recovered memories of childhood sexual abuse

The accuracy of “recovered memories” has long been a contentious issue. A new study has attempted to settle some of the controversy by classifying people who reported being sexually abused as children according to how they remembered the event: “spontaneously recovered” (the participant had forgotten and then spontaneously recalled the abuse outside of therapy, without any prompting), “recovered in therapy” (the participant had recovered the abuse during therapy, prompted by suggestion) or “continuous” (the participant had always been able to recall the abuse). Interviewers who were blind to the type of abuse memory then attempted to confirm or refute the abuse events from outside sources. There were 71 participants who had continuous memory of the event, and 57 participants who had discontinuous memory — of these 41 recalled it spontaneously and 16 in therapy. It was found that spontaneously recovered memories were corroborated about as often (37% of the time) as continuous memories (45%), suggesting that such memories are likely to be just as accurate as memories that have persisted. However, in no case could events that had been ‘recovered’ in therapy be verified. Moreover, evidence that suggestion during therapy possibly brings about these ‘memories’ comes from the finding that individuals who recalled the memories outside therapy were markedly more surprised at the existence of their memories than were individuals who initially recalled the memories in therapy.

Geraerts, E., Schooler, J.W., Merckelbach, D., Jelicic, M., Hauer, B.J.A. & Ambadar, Z. 2007. The Reality of Recovered Memories: Corroborating Continuous and Discontinuous Memories of Childhood Sexual Abuse. Psychological Science, 18 (7), 564–568.

The study is part of an ongoing research project examining recovered memories. For more information, go to www.personeel.unimaas.nl/e.geraerts.

http://www.eurekalert.org/pub_releases/2007-06/afps-sdf061307.php

Virtual reality can improve memory, perhaps too much

A study of virtual marketing strategies has found that people who learned about a camera’s functions through an interactive virtual rendition remembered its functions better than those who learned through text and static pictures. However, they also were more likely to believe it could do things that it couldn't do.

Schlosser, A.E. 2006. Learning Through Virtual Product Experience: The Role of Imagery on True Versus False Memories. Journal of Consumer Research, 33, 377-383.

http://www.eurekalert.org/pub_releases/2006-12/uocp-vrc120506.php

Increasing consumer preferences by manipulating memory

In two experiments, people who had to solve an anagram before seeing a target brand, they were more likely to claim to have seen the brand before, and to prefer it over competing brands.

Kronlund, A. & Bernstein, D.M. 2006. Unscrambling words increases brand name recognition and preference. Applied Cognitive Psychology, 20(5), 681–687.

http://www.eurekalert.org/pub_releases/2006-06/jws-icp062606.php

Older adults more likely to "remember" misinformation

In a study involving older adults (average age 75) and younger adults (average age 19), participants studied lists of paired related words, then viewed new lists of paired words, some the same as before, some different, and some with only one of the two words the same. In those cases, the "prime" word, which was presented immediately prior to the test, was plausible but incorrect. The older adults were 10 times more likely than young adults to accept the wrong word and falsely "remember" earlier studying that word. This was true even though older adults had more time to study the list of word pairs and attained a performance level equal to that of the young adults. Additionally, when told they had the option to "pass" when unsure of an answer, older adults rarely used the option. Younger adults did, greatly reducing their false recall. The findings reflect real-world reports of a rising incidence of scams perpetrated on the elderly, which rely on the victim’s poor memory and vulnerability to the power of suggestion.

Jacoby, L.L., Bishara, A.J., Hessels, S. & Toth, J.P. 2005. Aging, Subjective Experience, and Cognitive Control: Dramatic False Remembering by Older Adults. Journal of Experimental Psychology: General, 134 (2)

http://www.eurekalert.org/pub_releases/2005-05/apa-gmc051005.php

Repeated product warnings are remembered as product recommendations

Warnings about particular products may have quite the opposite effect than intended. Because we retain a familiarity with encountered items far longer than details, the more often we are told a claim about a consumer item is false, the more likely we are to accept it as true a little further down the track. Research also reveals that older adults are more susceptible to this error. It is relevant to note that in the U.S. at least, some 80% of consumer fraud victims are over 65.

Skurnik, I., Yoon, C., Park, D.C. & Schwarz, N. 2005. How Warnings About False Claims Become Recommendations. Journal Of Consumer Research, 31

http://www.eurekalert.org/pub_releases/2005-03/uocp-nrr032905.php

How the brain creates false memories

An imaging study has shed new light on how false memories are formed. The study involved participants watching series of 50 photographic slides that told a story. A little later, the subjects were shown what they thought was the same sequence of slides but in fact containing a misleading item and differing in small ways from the original. Two days later, the subjects’ memories were tested. It was found that, during the original encoding (the 1st set of slides), activity in the hippocampus and perirhinal cortex was greater for true than for false memories, while during the misinformation phase (2nd set), the activity there was greater for false memories. In other regions, such as the prefrontal cortex, activity for false memories tended to be greater during the original event. Activity in the prefrontal cortex may be correlated to encoding the source, or context, of the memory. Thus, weak prefrontal cortex activity during the misinformation phase indicates that the details of the second experience were poorly placed in a learning context, and as a result more easily embedded in the context of the first event, creating false memories.

Okado, Y. & Stark, C.E.L. 2005. Neural activity during encoding predicts false memories created by misinformation. Learning & Memory, 12, 3-11.

http://www.eurekalert.org/pub_releases/2005-02/cshl-htb012805.php

How false memories are formed

An imaging study has attempted to pinpoint how people form a memory for something that didn't actually happen. The study measured brain activity in people who looked at pictures of objects or imagined other objects they were asked to visualize. Three brain areas (precuneus, right inferior parietal cortex and anterior cingulate) showed greater responses in the study phase to words that would later be falsely remembered as having been presented with photos, compared to words that were not later misremembered as having been presented with photos. Brain activity produced in response to viewed pictures also predicted which pictures would be subsequently remembered. Two brain regions in particular -- the left hippocampus and the left prefrontal cortex -- were activated more strongly for pictures that were later remembered than for pictures that were forgotten. The new findings directly showed that different brain areas are critical for accurate memories for visual objects than for false remembering -- for forming a memory for an imagined object that is later remembered as a perceived object.

Gonsalves, B., Reber, P.J., Gitelman, D.R., Parrish, T.B., Mesulam, M-M. & Paller, K.A. 2004. Neural Evidence That Vivid Imagining Can Lead to False Remembering. Psychological Science, 15 (10), 655-660.

http://www.eurekalert.org/pub_releases/2004-10/nu-nrp101404.php

Mood affects eyewitness accuracy and reasoning

A new study suggests people in a negative mood provide more accurate eyewitness accounts than people in a positive mood state. Moreover, people in a positive mood showed poorer judgment and critical thinking skills than those in a negative mood. The researchers suggest that a negative mood state triggers more systematic and attentive, information processing, while good moods signal a benign, non-threatening environment where we don't need to be so vigilant.

The study is to be published in the Journal of Experimental Social Psychology.

http://www.eurekalert.org/pub_releases/2004-08/uons-era082004.php

Stress reactions no guarantee of authenticity

Physical stress reactions have often been taken as evidence for the authenticity of a memory. A recent study investigated people with “memories” of alien abductions (on the grounds that these are the memories least likely to be true) and found that those who believed they had been abducted by aliens responded physically to recall of that memory in the same way as to recall of other, true, stressful events. The finding suggests that a person’s reaction to a memory is no evidence for whether or not it truly happened.

McNally, R.J., Lasko, N.B., Clancy, S.A., Macklin, M.L., Pitman, R.K. & Orr S.P. 2004. Psychophysiological Responding During Script-Driven Imagery in People Reporting Abduction by Space Aliens. Psychological Science, 15 (7), 493-497.

http://www.eurekalert.org/pub_releases/2004-06/aps-ptw062104.php

Stress no aid to memory

Numerous studies have questioned the accuracy of recall of traumatic events, but the research is often dismissed as artificial and not intense enough to simulate real-life trauma. A new study has used real stress: 509 active duty military personnel enrolled in survival school training were deprived of food and sleep 48 hours and then interrogated. A day later, only 30% of those presented with a line-up could identify the right person, only 34% identified their interrogator from a photo-spread and 49% from single photos shown sequentially (putting the interrogator in the same clothing boosted correct identification to 66%). Thirty people even got the gender wrong. Those subjected to physical threats (half the participants) performed worse.

Morgan, C.A.III, Hazlett, G., Doran, A., Garrett, S., Hoyt, G., Thomas, P., Baranoski, M. & Southwick, S.M. 2004. Accuracy of eyewitness memory for persons encountered during exposure to highly intense stress. International Journal of Law and Psychiatry, 27 (3), 265-279.

http://www.newscientist.com/news/news.jsp?id=ns99995089
http://www.eurekalert.org/pub_releases/2004-06/yu-emp060304.php
http://www.eurekalert.org/pub_releases/2004-06/ns-mfy060904.php

Memories of crime stories influenced by racial stereotypes

The influence of stereotypes on memory, a well-established phenomenon, has been demonstrated anew in a study concerning people's memory of news photographs. In the study, 163 college students (of whom 147 were White) examined one of four types of news stories, all about a hypothetical Black man. Two of the stories were not about crime, the third dealt with non-violent crime, while the fourth focused on violent crime. All four stories included an identical photograph of the same man. Afterwards, participants reconstructed the photograph by selecting from a series of facial features presented on a computer screen. It was found that selected features didn’t differ from the actual photograph in the non-crime conditions, but for the crime stories, more pronounced African-American features tended to be selected, particularly so for the story concerning violent crime. Participants appeared largely unaware of their associations of violent crime with the physical characteristics of African-Americans.

Oliver, M.B., Jackson, R.L.II., Moses, N.N. & Dangerfield, C.L. 2004. The Face of Crime: Viewers' Memory of Race-Related Facial Features of Individuals Pictured in the News. Journal of Communication, 54, 88-104.

http://www.eurekalert.org/pub_releases/2004-05/ps-rmo050504.php

Photos facilitate "recovery" of false memories

Another study demonstrating the ease with which people can be persuaded to accept a fabricated childhood memory. A Canadian study found that use of photographs (used by some psychotherapists as memory cues for the "recovery" of patients' possible childhood sexual abuse) resulted in an astounding two-out-of-three participants accepting a concocted false grade-school event as having really happened to them. The study involved 45 first year psychology students being told three stories about their grade-school experiences and asked about their memories of them. Two of the accounts were of real events advised by the participant's parents; the third was fictitious. Participants were encouraged to recall the events through a mix of guided imagery and "mental context re-instatement"--the mental equivalent of putting themselves back in their grade-school shoes. Half of the participants were also given their real grade one class photo. While a quarter or so of the participants without a photo claimed to have some memory of the false event, 67% of those shown a photo claimed some memory.

Lindsay, D.S., Hagen, L., Read, J.D., Wade, K.A. & Garry, M. 2004. True photographs and false memories. Psychological Science, 15, 149-154.
A PDF version of the article can be found at http://web.uvic.ca/psyc/lindsay/cv/index.html#publications

http://www.eurekalert.org/pub_releases/2004-03/nsae-cwb033104.php

Initial steps in a test for false memory

It appears that sensory areas of the brain might be more revealing than the areas specific involved in memory when trying to tell whether a given memory is true or false. An imaging study has found that when people correctly recognised a shape, a visual area called the ventral temporal cortex was more active than when people mistakenly identified a shape that was only similar. In similar vein, auditory regions of the brain became more active during accurate recognition of words.

http://www.newscientist.com/news/news.jsp?id=ns99994363
http://www.eurekalert.org/pub_releases/2003-11/sfn-sfb110803.php

Failing recall not an inevitable consequence of aging

New research suggests age-related cognitive decay may not be inevitable. Tests of 36 adults with an average age of 75 years found that about one out of four had managed to avoid memory decline. Those adults who still had high frontal lobe function had memory skills “every bit as sharp as a group of college students in their early 20s." (But note that most of those older adults who participated were highly educated – some were retired academics). The study also found that this frontal lobe decline so common in older adults is associated with an increased susceptibility to false memories – hence the difficulty often experienced by older people in recalling whether they took a scheduled dose of medication.

The research was presented on August 8 at the American Psychological Association meeting in Toronto.

http://www.eurekalert.org/pub_releases/2003-08/wuis-fmf080703.php

Impact of 'generative learning' on false memories

"Generative learning " refers to the idea that people remember things better when actively involved in forming an idea. For example, if an individual is given a clue and asked to provide a one-word answer, he or she will remember that word better than if simply given the word and told to memorize it. A recent study looked at the effect generative learning might have on the formation of false memories. Participants were given a list of words to memorize – some of the words were complete, and others were missing one letter. Complete and incomplete words came from different subject categories. After the learning period, participants were given a "distracting" math quiz, then presented with a list of words. This list included some words that had not been included in the original list but were related to the subject categories used. It was found that people were far more likely to mistakenly identify a word as one they had seen before, if it was from the same category as the complete words. In another experiment, participants were given a list of words that were missing one letter and could be either of two words, depending on what letter filled in the blank. Some of the participants were given a positive clue, such as "a tennis shoe," and asked to fill in the blank. Others were given a negative clue, such as "not part of a stereo." People were more likely to remember words when given a negative clue than a positive one, and were also less likely to falsely remember a word.

Soraci, S.A., Carlin, M.T., Toglia, M.P., Chechile, R.A. & Neuschatz, J.S. 2003. Generative Processing and False Memories: When There Is No Cost. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29 (4), 511–523.

http://www.eurekalert.org/pub_releases/2003-07/tu-tup072403.php

Remembering imagined actions as real

The latest from Elizabeth Loftus, guru of false memory research. In this study, volunteers performed a variety actions from the commonplace (flipping a coin) to the bizarre (crushing a Hershey's kiss with a dental floss container). Later, they were asked to imagine additional actions, such as kissing a frog. At a future time, participants were asked to recall their actions on that specific day. It was found that 15% of the volunteers claimed they had actually performed some of the actions they had only imagined.

The research was reported at the "Remembering Traumatic Experiences in Childhood: Reliability and Limitations of Memory" symposium at the American Association for the Advancement of Science Annual Meeting in Denver, on February 16.

http://www.eurekalert.org/pub_releases/2003-02/uoc--fkf021303.php

Hypnosis may give false confidence in inaccurate memories

A new study suggests that hypnosis doesn't help people recall events more accurately - but it does tend to make people more confident of their inaccurate memories. Researchers asked college students, including some who were under hypnosis, to give the dates of 20 national and international news events from the past 11 years. Those who were hypnotized were no more accurate than others in choosing the correct dates. However, those who were hypnotized were more reluctant to change their answers when they were told they might be wrong. Joseph Green, co-author of the study and associate professor of psychology at Ohio State University's Lima campus, said the results of the new study don't mean that hypnosis has no value. Any kind of technique used to retrieve memories - including the use of diaries or drugs - will produce inaccurate memories. However, the difference is that people tend to have more faith in hypnosis than they do in other memory techniques.

Green, J. & Lynn, S.J. (2001). a paper presented Aug. 26 in San Francisco at the annual meeting of the American Psychological Association (hypnotism).The results of this study were presented in San Francisco at the annual meeting of the American Psychological Association on August 26.

http://www.eurekalert.org/pub_releases/2001-08/osu-hmg082201.php

New evidence shows how easily false memories can be created

About one-third of the people who were exposed to a fake print advertisement that described a visit to Disneyland and how they met and shook hands with Bugs Bunny later said they remembered or knew the event happened to them.

The study was presented the annual meeting of the American Psychological Society on June 17 in Toronto and at a satellite session of the Society for Applied Research in Memory and Cognition in Kingston, Ontario.

http://www.eurekalert.org/pub_releases/2001-06/UoW-tIta-1006101.php

Magnetic resonance imaging reveals difference between true and false memories

Tests of the human capacity for believing false memories have typically involved giving subjects a list of associated words and then testing their memory for these words by offering a new list which includes not only the previous words but also related words that were not presented earlier. A strong tendency to falsely recognize such words is characteristically found, but intriguingly, the subjects also tend to rate true items higher than false items in terms of sensory details. This suggests that, although people truly believe their false memories, part of the brain at least, recognizes that they are not as "real" as true memories. This has been something of a conundrum in false memory research.
A recent study used magnetic resonance imaging to monitor brain activity during such testing. The memory experience was made richer by having the words read on video by alternating male and female speakers. The findings were the same as in previous studies - subjects rejected new words, but falsely recognized false words related to the true words. The brain scans revealed that different parts of the brain processed true and false memories differently. The region that processes perceptual information, such as the speaker appearance and voice, was more activated for true memories.

Cabeza, R., Rao, S.M., Wagner, A.D., Mayer, A.R. & Schacter, D.L. 2001. Can medial temporal lobe regions distinguish true from false? An event-related functional MRI study of veridical and illusory recognition memory. Proc. Natl. Acad. Sci. USA, 98 (8), 4805-4810.

http://www.eurekalert.org/pub_releases/2001-05/DU-Rhun-0305101.php

 

tags problems: 

Amnesia

Older news items (pre-2010) brought over from the old website

Hypnosis study sheds insight on amnesia

An intriguing study investigating brain activity of hypnotically induced forgetting may shed light on amnesia. Researchers showed volunteers a documentary depicting a day in the life of a young woman, followed a week later with a brain scan while they were put into a hypnotic state. They were given a posthypnotic suggestion to forget the movie, and a reversibility cue that would restore the memory. When their recall of the movie was later tested, those susceptible to posthypnotic amnesia showed reduced recall. Brain scans revealed different brain activity patterns between those susceptible and those who were not. For the susceptible, activity in some brain regions was suppressed during memory suppression, while activity in other regions increased. But when the posthypnotic suggestion was reversed, the susceptible group showed recovery of activity in suppressed regions. The findings suggest that suppression was exerted at early stages of the retrieval process, specifically, an executive pre-retrieval monitoring process that produces an early decision on whether to proceed or not on retrieval. The researchers suggest that some forms of amnesia may be a consequence of this ‘preretrieval memory abort’ mechanism.

Mendelsohn, A., Chalamish, Y., Solomonovich, A. & Dudai, Y. 2008. Mesmerizing Memories: Brain Substrates of Episodic Memory Suppression in Posthypnotic Amnesia. Neuron, 57, 159-170.

http://www.eurekalert.org/pub_releases/2008-01/cp-hsr010408.php

Statins associated with rare cases of temporary amnesia

Two recent studies have documented cases of amnesia and other nervous-system side effects after taking statins, the cholesterol-lowering drugs being prescribed to millions of people at risk of heart disease. It is emphasized that this is a rare problem, but given the vast numbers of people taking statins, it might still add up to a significant number of problems.

[2389] Wagstaff, L. R., Mitton M. W., Arvik B ML., & Doraiswamy M. P.
(2003).  Statin-Associated Memory Loss: Analysis of 60 Case Reports and Review of the Literature.
Pharmacotherapy. 23(7), 871 - 880.

http://www.eurekalert.org/pub_releases/2003-12/ns-ymw120303.php

Forgetting

Older news items (pre-2010) brought over from the old website

Relearning a forgotten language is easier for those under 40

A small study involving 7 native English speakers who had learned either Hindi or Zulu as children when living abroad, but now had no memory of the neglected language, found that the three who were under 40 could relearn certain phonemes that are difficult for native English speakers to recognize, but those over 40, like those who had never been exposed to the language in childhood, could not. The amount of experience of exposure in childhood ranged from 4 to 10 years, and it’s especially notable that the 47-year old individual who had 10 years exposure, having become almost fluent, still could not recover the ability to distinguish these difficult sounds. It should also be noted that where the ability was recovered (and recovered almost to native ability), it took about 15-20 training sessions. The findings point to the value of early foreign language learning.

Bowers, J.S., Mattys, S.L. & Gage, S.H. 2009. Preserved Implicit Knowledge of a Forgotten Childhood Language. Psychological Science, 20 (9), 1064–1069.

http://www.eurekalert.org/pub_releases/2009-09/afps-uio092409.php

Forgotten memories still there

In an imaging study in which 16 college students were shown a list of words, asked to say each word backwards, think of how it could be used, and imagine how an artist would draw it, then shown the list again 20 minutes later and asked to remember what they could of each word, brain activity showed that recollection reinstated the original pattern of activity, and its strength correlated with the strength of the memory. Moreover, even when the student had no conscious memory, the pattern was still there, although weak. Follow-up studies will explore the degradation over time.

Johnson, J.D. et al. 2009. Recollection, Familiarity, and Cortical Reinstatement: A Multivoxel Pattern Analysis. Neuron, 63 (5), 697-708.

http://www.wired.com/wiredscience/2009/09/forgottenmemories/
http://www.eurekalert.org/pub_releases/2009-09/uoc--mee090809.php

New insights into memory without conscious awareness

An imaging study in which participants were shown a previously studied scene along with three previously studied faces and asked to identify the face that had been paired with that scene earlier has found that hippocampal activity was closely tied to participants' tendency to view the associated face, even when they failed to identify it. Activity in the lateral prefrontal cortex, an area required for decision making, was sensitive to whether or not participants had responded correctly and communication between the prefrontal cortex and the hippocampus was increased during correct, but not incorrect, trials. The findings suggest that conscious memory may depend on interactions between the hippocampus and the prefrontal cortex.

Hannula, D.E. & Ranganath, C. 2009. The Eyes Have It: Hippocampal Activity Predicts Expression of Memory in Eye Movements. Neuron, 63 (5), 592-599.

http://www.eurekalert.org/pub_releases/2009-09/cp-ycb090309.php
http://sciencenow.sciencemag.org/cgi/content/full/2009/910/4?etoc

How we forget over the short term

Information in short-term memory is rapidly forgotten once attention is diverted, but why? Is it because memory traces decay in the absence of attention? Or is it because older traces interfere with new traces? In a study in which volunteers were shown a string of 3 letters, then told to count backwards for 4, 8, 12, or 16 seconds, before recalling the letters, it was found that those who counted backwards for the longest time were better able to recall the letters than those who counted backwards for shorter times. This suggests that temporal confusability, not decay, is the main culprit in short-term forgetting. The finding is consistent with research indicating that interference is more important than decay in long-term forgetting as well.

Unsworth, N., Heitz, R.P. & Parks, N.A. 2008. The Importance of Temporal Distinctiveness for Forgetting Over the Short Term. Psychological Science, 19 (11), 1078-1081.

http://www.eurekalert.org/pub_releases/2008-12/afps-src121208.php

Forgotten but not gone

We all know it’s easier to re-learn something than learn it for the first time. But why? When we learn, as we know, a neuron makes new connections with other neurons, and these connections are made through synapses. If that connection breaks down, we forget. A new study sheds light on what happens when we re-learn something we thought was forgotten. It appears that in the case of information (synaptic connections) that isn’t needed any more, the synapses are disabled, not destroyed. When needed again, they just need to be reactivated.

Hofer, S.B. et al. 2008. Experience leaves a lasting structural trace in cortical circuits. Nature, Published online November 12, 2008

http://www.eurekalert.org/pub_releases/2008-11/m-fbn111708.php

A new perspective on forgetting

A new mathematical model may shed light on forgetting. The model has found that "free-lunch learning" (the way in which forgotten material is called back to mind when we relearn some part of it — as when a few words in a foreign language we learned at school brings back many other words) occurs when forgetting was induced by random fluctuations in the strength of synaptic connections (‘synaptic drift'). But when forgetting is induced by progressive decay in synaptic strength (which is how forgetting has traditionally been thought of), then "negative free-lunch learning" (where relearning parts of forgotten associations decreases the recall of associated knowledge) occurs. This suggests that forgetting occurs because of random drift rather than a decay in the strength of synaptic connections.

Stone, J.V. & Jupp P.E. 2008. Falling towards Forgetfulness: Synaptic Decay Prevents Spontaneous Recovery of Memory. PLoS Computational Biology, 4(8), e1000143. Full text available at http://dx.plos.org/10.1371/journal.pcbi.1000143

http://www.eurekalert.org/pub_releases/2008-08/plos-rpn082108.php

New research shows why too much memory may be a bad thing

People who are able to easily and accurately recall historical dates or long-ago events may have a harder time with word recall or remembering the day's current events. A mouse study reveals why. Neurogenesis has been thought of as a wholly good thing — having more neurons is surely a good thing — but now a mouse study has found that stopping neurogenesis in the hippocampus improved working memory. Working memory is highly sensitive to interference from information previously stored in memory, so it may be that having too much information may hinder performing everyday working memory tasks.

Saxe, M.D. et al. 2007. Paradoxical influence of hippocampal neurogenesis on working memory. Proceedings of the National Academy of Sciences, 104 (11), 4642-4646.
Full text is available at http://www.pnas.org/cgi/reprint/104/11/4642

http://www.physorg.com/news94384934.html
http://www.eurekalert.org/pub_releases/2007-03/cumc-nrs032807.htm

More insight into why we forget

Increasingly researchers have come to believe interference is far more important for forgetting than the traditional notion of decay over time. A technique called "transcranial magnetic stimulation" (TMS) has now revealed that an area within the prefrontal cortex called the left inferior frontal gyrus, known to be active when volunteers take memory tests while confronting interference, is essential for blocking interference.

Feredoes, E., Tononi, G. & Postle, B.R. 2006. Direct evidence for a prefrontal contribution to the control of proactive interference in verbal working memory. Proceedings of the National Academy of Sciences, 103 (51), 19530-19534.

http://www.eurekalert.org/pub_releases/2006-12/uow-ccr120406.php

Memories are harder to forget than recently thought

Previous rodent studies have shown that the process of encoding a memory can be blocked by the use of a protein synthesis inhibitor called anisomycin (http://www.eurekalert.org/pub_releases/2000-08/NYU-Nnfl-1508100.htm). Experiments with anisomycin helped lead to the acceptance of a theory in which a learned behavior is consolidated into a stored form and that then enters a 'labile' - or adaptable - state when it is recalled. According to these previous studies, the act of putting a labile memory back into storage involves a reconsolidation process identical to the one used to store the memory initially. Indeed, experiments showed that anisomycin could make a mouse forget a memory if it were given anisomycin directly after remembering an event. In a new study, however, researchers have showed that disruption of a "re-remembered" memory was not permanent. Mice demonstrated that they could remember the original learned behavior 21 days later. This research thus casts doubt on the concept of “reconsolidation”, or at least demonstrates that we still have much to learn about this process.

Lattal, K.M. & Abel, T. 2004. Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time. PNAS, 101, 4667-4672.

http://www.eurekalert.org/pub_releases/2004-03/uop-mah031504.php

More evidence for active forgetting

In an imaging study involving 24 people aged 19 to 31, participants were given pairs of words and told to remember some of the matched pairs but forget others. Trying to shut out memory appeared more demanding than remembering, in that some areas of the brain were significantly more when trying to suppress memory. Both the prefrontal cortex and the hippocampus were active. Those whose prefrontal cortex and hippocampus were most active during this time were most successful at suppressing memory.

Anderson, M.C., Ochsner, K.N., Kuhl, B., Cooper, J., Robertson, E., Gabrieli, S.W., Glover, G.H. & Gabrieli, J.D.E. 2004. Neural Systems Underlying the Suppression of Unwanted Memories. Science, 303 (5655), 232-235.

http://www.eurekalert.org/pub_releases/2004-01/su-rrb010604.php

You may not be able to recall it, but it influences you anyway

“Forgetting” doesn’t mean the memory is erased from your brain. “Forgotten” information may in fact influence you more than it would if it hadn’t been forgotten — because you’re unaware of the influence. This somewhat alarming possibility has been raised by a recent study in which college students studied lists of nonfamous and famous names. Some participants were told to remember the nonfamous names, while the others were told to forget them. Later, both groups were asked to judge whether or not a name was famous from a mixed list of famous and nonfamous names. Those who were told to forget misidentified more nonfamous names as famous than those who had been told to remember.
Such a judgment is of course made on the basis of the familiarity of the name. It is exposure to an item that affects its familiarity – not whether or not you consciously remember it. By telling the participants to “forget” what they’d seen, the experimenters were removing the participants’ awareness of the source of the familiarity, not the familiarity itself.

Bjork, E.L. & Bjork, R.A. 2003. Intentional Forgetting Can Increase, Not Decrease, Residual Influences of To-Be-Forgotten Information. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29 (4), 524–531.

Failing recall not an inevitable consequence of aging

New research suggests age-related cognitive decay may not be inevitable. Tests of 36 adults with an average age of 75 years found that about one out of four had managed to avoid memory decline. Those adults who still had high frontal lobe function had memory skills “every bit as sharp as a group of college students in their early 20s." (But note that most of those older adults who participated were highly educated – some were retired academics). The study also found that this frontal lobe decline so common in older adults is associated with an increased susceptibility to false memories – hence the difficulty often experienced by older people in recalling whether they took a scheduled dose of medication.

The research was presented on August 8 at the American Psychological Association meeting in Toronto.

http://www.eurekalert.org/pub_releases/2003-08/wuis-fmf080703.php

Selective erasure of memories one step closer

It is now believed that memories become “labile” (able to be changed) every time they are reactivated. If so, it would seem that we could, by re-activating a memory, “erase” it – even though the memory is very old. Researchers have, however, had mixed success in achieving this. A new report suggests why. Any memory is made up of a number of different associations, but only one association will be “dominant” (will determine our reaction). It is this dominant association that is susceptible to change, and thus, to erasure.

Eisenberg, M., Kobilo, T., Berman, D.E. & Dudai, Y. 2003. Stability of Retrieved Memory: Inverse Correlation with Trace Dominance. Science, 301 (5636), 1102-1104.

http://www.eurekalert.org/pub_releases/2003-08/wi-npg082003.php

Older adults better at forgetting negative images

It seems that this general tendency, to remember the good, and let the bad fade, gets stronger as we age. Following recent research suggesting that older people tend to regulate their emotions more effectively than younger people, by maintaining positive feelings and lowering negative feelings, researchers examined age differences in recall of positive, negative and neutral images of people, animals, nature scenes and inanimate objects. The first study tested 144 participants aged 18-29, 41-53 and 65-80. Older adults recalled fewer negative images relative to positive and neutral images. For the older adults, recognition memory also decreased for negative pictures. As a result, the younger adults remembered the negative pictures better. Preliminary brain research suggests that in older adults, the amygdala is activated equally to positive and negative images, whereas in younger adults, it is activated more to negative images. This suggests that older adults encode less information about negative images, which in turn would diminish recall.

Charles, S.T., Mather, M. & Carstensen, L.L. 2003. Aging and Emotional Memory: The Forgettable Nature of Negative Images for Older Adults. Journal of Experimental Psychology: General, 132(2), 310-24.

Memories may be hard to find when thalamus fails to synchronize rhythms

Memory codes - the representation of an object or experience in memory - are patterns of connected neurons. The neurons that are linked are not necessarily in the same region of the brain. Exciting new research has measured the electrical rhythms that parts of the brain use to communicate with each other and found that the thalamus regulates these rhythms. "Memory appears to be a constructive process in combining the features of the items to be remembered rather than simply remembering each object as a whole form. The thalamus seems to direct or modulate the brain's activity so that the regions needed for memory are connected." The authors suggest that tips of the tongue experiences (when only part of a memory is recalled) may occur when the rhythms don't synchronize with the regions properly.

Slotnick, S.D., Moo, L.R., Kraut, M.A., Lesser, R.P. & Hart, J. Jr. 2002. Interactions between thalamic and cortical rhythms during semantic memory recall in human. Proc. Natl. Acad. Sci. U.S.A., 99, 6440-6443.

http://www.eurekalert.org/pub_releases/2002-05/uoaf-mi050902.php

 

tags problems: 

Obesity

Older news items (pre-2010) brought over from the old website

Overweight and obese elderly have smaller brains

Analysis of brain scans from 94 people in their 70s who were still "cognitively normal" five years after the scan has revealed that people with higher body mass indexes had smaller brains on average, with the frontal and temporal lobes particularly affected (specifically, in the frontal lobes, anterior cingulate gyrus, hippocampus, and thalamus, in obese people, and in the basal ganglia and corona radiate of the overweight). The brains of the 51 overweight people were, on average, 6% smaller than those of the normal-weight participants, and those of the 14 obese people were 8% smaller. To put it in more comprehensible, and dramatic terms: "The brains of overweight people looked eight years older than the brains of those who were lean, and 16 years older in obese people." However, overall brain volume did not differ between overweight and obese persons. As yet unpublished research by the same researchers indicates that exercise protects these same brain regions: "The most strenuous kind of exercise can save about the same amount of brain tissue that is lost in the obese."

[733] Thompson, P. M., Raji C. A., Ho A. J., Parikshak N. N., Becker J. T., Lopez O. L., et al.
(2010).  Brain structure and obesity.
Human Brain Mapping. 31(3), 353 - 364.

http://www.newscientist.com/article/mg20327222.400-expanding-waistlines-may-cause-shrinking-brains.htm

Obesity surgery can lead to memory loss

A review of the literature has found that weight loss surgery such as gastric bypass surgery, can lead to a vitamin deficiency that can cause memory loss and confusion, inability to coordinate movement, and other problems. Wernicke encephalopathy affects the brain and nervous system when the body doesn’t get enough vitamin B1 (thiamine). The study found that the syndrome occurs most often in people who have frequent vomiting after the surgery, and usually occurs within one to three months after the surgery.

Singh, S. & Kumar, A. 2007. Wernicke encephalopathy after obesity surgery: A systematic review. Neurology, 68, 807-811.

http://www.eurekalert.org/pub_releases/2007-03/aaon-osc030607.php

High BMI tied to poorer cognitive function in middle-aged adults

A study of 2,223 healthy French men and women aged 32—62 found that a higher body mass index (BMI) was associated with lower scores on a word-recall task.

[823] Cournot, M., Marquie J. C., Ansiau D., Martinaud C., Fonds H., Ferrieres J., et al.
(2006).  Relation between body mass index and cognitive function in healthy middle-aged men and women.
Neurology. 67(7), 1208 - 1214.

http://www.sciencedaily.com/releases/2006/10/061010023000.htm
http://www.eurekalert.org/pub_releases/2006-10/aaon-hbt100306.php

Morbid obesity in toddlers linked to low IQ

A study of 18 children and adults with early-onset morbid obesity (they weighed at least 150% of their ideal body weight before they were 4), 19 children and adults with Prader-Willi syndrome, and 24 of their normal-weight siblings, has revealed a link between morbid obesity in toddlers and lower IQ scores, cognitive delays and brain lesions similar to those seen in Alzheimer's disease patients. The links between cognitive impairments and Prader-Willi syndrome (a genetic disorder that causes people to eat nonstop and become morbidly obese at a very young age if not supervised) are well-established. But researchers were surprised to find patients with early-onset morbid obesity had an average IQ of 77, compared to an average of 63 for Prader-Willi patients and an average of 106 for the control group of siblings. Scans also revealed white-matter lesions on the brains of many of the Prader-Willi and early-onset morbidly obese patients.

[962] Sahoo, T., Beaudet A. L., Driscoll D. J., Miller J., Kranzler J., Liu Y., et al.
(2006).  Neurocognitive findings in Prader-Willi syndrome and early-onset morbid obesity.
The Journal of Pediatrics. 149(2), 192 - 198.

http://www.eurekalert.org/pub_releases/2006-08/uof-ssl083106.php

Fat hormone linked to learning and memory

A new study reveals why obese patients who have diabetes also may have problems with their long-term memory. Leptin — the so-called ‘fat’ hormone — doesn't cross into the brain to help regulate appetite in obese people. Leptin also acts in the hippocampus, suggesting that leptin plays a role in learning and memory. The new study supports this by demonstrating that mice navigated a maze better after they received leptin. Moreover, mice with elevated levels of amyloid-beta plaques (characteristic of Alzheimer's) were particularly sensitive to leptin.

[2400] Farr, S. A., Banks W. A., & Morley J. E.
(2006).  Effects of leptin on memory processing.
Peptides. 27(6), 1420 - 1425.

http://www.sciencedaily.com/releases/2006/06/060614090511.htm
http://www.eurekalert.org/pub_releases/2006-06/slu-alb061306.php

Attention Problems

Older news items (pre-2010) brought over from the old website

Binge drinking affects attention and working memory in young university students

A Spanish study of 95 first-year university students, 42 of them binge drinkers, has found that those who engaged in binge drinking required greater attentional processing during a visual working memory task in order to carry it out correctly. They also had difficulties differentiating between relevant and irrelevant stimuli. Binge drinkers are defined as males who drink five or more standard alcohol drinks, and females who drink four or more, on one occasion and within a two-hour interval. Some 40% of university students in the U.S. are considered binge drinkers.

 [231] Crego, A., Holguín S R., Parada M., Mota N., Corral M., & Cadaveira F.
(2009).  Binge drinking affects attentional and visual working memory processing in young university students.
Alcoholism, Clinical and Experimental Research. 33(11), 1870 - 1879.

http://www.eurekalert.org/pub_releases/2009-08/ace-bda080509.php

Short stressful events may improve working memory

We know that chronic stress has a detrimental effect on learning and memory, but a new rat study shows how acute stress (a short, sharp event) can produce a beneficial effect. The rats, trained to a level of 60-70% accuracy on a maze, were put through a 20-minute forced swim before being run through the maze again. Those who experienced this stressful event were better at running the maze 4 hours later, and a day later, than those not forced through the stressful event. It appears that the stress hormone corticosterone (cortisol in humans) increases transmission of the neurotransmitter glutamate in the prefrontal cortex and improves working memory. It also appears that chronic stress suppresses the transmission of glutamate in the prefrontal cortex of male rodents, while estrogen receptors in female rodents make them more resilient to chronic stress than male rats.

[1157] Yuen, E. Y., Liu W., Karatsoreos I. N., Feng J., McEwen B. S., & Yan Z.
(2009).  Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory.
Proceedings of the National Academy of Sciences of the United States of America. 106(33), 14075 - 14079.

http://www.eurekalert.org/pub_releases/2009-07/uab-sse072309.php

When emotions involved, older adults may perform memory tasks better than young adults

A study involving 72 young adults (20-30 years old) and 72 older adults (60-75) has found that regulating emotions – such as reducing negative emotions or inhibiting unwanted thoughts – is a resource-demanding process that disrupts the ability of young adults to simultaneously or subsequently perform tasks, but doesn’t affect older adults. In the study, most of the participants watched a two-minute video designed to induce disgust, while the rest watched a neutral two-minute clip. Participants then played a computer memory game. Before playing 2 further memory games, those who had watched the disgusting video were instructed either to change their negative reaction into positive feelings as quickly as possible or to maintain the intensity of their negative reaction, or given no instructions. Those young adults who had been told to turn their disgust into positive feelings, performed significantly worse on the subsequent memory tasks, but older adults were not affected. The feelings of disgust in themselves did not affect performance in either group. It’s speculated that older adults’ greater experience allows them to regulate their emotions without cognitive effort.

[200] Scheibe, S., & Blanchard-Fields F.
(2009).  Effects of regulating emotions on cognitive performance: what is costly for young adults is not so costly for older adults.
Psychology and Aging. 24(1), 217 - 223.

http://www.eurekalert.org/pub_releases/2009-03/giot-oac030409.php

Inconsistent processing speed among children with ADHD

A new analytical technique has revealed that the problem with children with ADHD is not so much that they are slower at responding to tasks, but rather that their response is inconsistent. The study of 25 children with ADHD and 24 typically developing peers found that on a task in which a number on one screen needed to be mentally added to another number shown on a second screen, those with ADHD were much less consistent in their response times, although the responses they did give were just as accurate. Higher levels of hyperactivity and restlessness or impulsivity (as measured by parent survey) correlated with more slower reaction times. The finding supports the idea that what underlies impaired working memory is a problem in how consistently a child with ADHD can respond during a working memory task.

[911] Buzy, W. M., Medoff D. R., & Schweitzer J. B.
(2009).  Intra-Individual Variability Among Children with ADHD - on a Working Memory Task: An Ex-Gaussian Approach.
Child Neuropsychology. 15(5), 441 - 441.

http://www.eurekalert.org/pub_releases/2009-03/uoc--ips032409.php

Hyperactivity enables children with ADHD to stay alert

A study of 12 8- to 12-year-old boys with ADHD, and 11 of those without, has found that activity levels of those with ADHD increased significantly whenever they had to perform a task that placed demands on their working memory. In a highly stimulating environment where little working memory is required (such as watching a Star Wars video), those with ADHD kept just as still as their normal peers. It’s suggested that movement helps them stay alert enough to complete challenging tasks, and therefore trying to limit their activity (when non-destructive) is counterproductive. Providing written instructions, simplifying multi-step directions, and using poster checklists are all strategies that can be used to help children with ADHD learn without overwhelming their working memories.

[734] Rapport, M., Bolden J., Kofler M., Sarver D., Raiker J., & Alderson R.
(2009).  Hyperactivity in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): A Ubiquitous Core Symptom or Manifestation of Working Memory Deficits?.
Journal of Abnormal Child Psychology. 37(4), 521 - 534.

http://www.eurekalert.org/pub_releases/2009-03/uocf-ush030909.php

Poverty can physically impair brain, reducing children's ability to learn

We know that stress affects learning and memory, and there is considerable evidence confirming the commonsense intuition that low-income families are under a lot of stress. Now a long-term study involving 195 children from rural households above and below the poverty line has found that children who lived in impoverished environments for longer periods of time during childhood showed higher stress scores and suffered greater impairments in working memory at 17. Those who spent their entire childhood in poverty scored about 20% lower on working memory tests at 17 than those who were never poor.

[461] Evans, G. W., & Schamberg M. A.
(2009).  Childhood poverty, chronic stress, and adult working memory.
Proceedings of the National Academy of Sciences. 106(16), 6545 - 6549.

Full text available at http://www.pnas.org/content/early/2009/03/27/0811910106.abstract?sid=b4c74b57-a4a5-447b-8675-ba75e69f3ec2
http://www.physorg.com/news158594009.html
http://www.washingtonpost.com/wp-dyn/content/article/2009/04/05/AR2009040501719.html

New research shows why too much memory may be a bad thing

People who are able to easily and accurately recall historical dates or long-ago events may have a harder time with word recall or remembering the day's current events. A mouse study reveals why. Neurogenesis has been thought of as a wholly good thing — having more neurons is surely a good thing — but now a mouse study has found that stopping neurogenesis in the hippocampus improved working memory. Working memory is highly sensitive to interference from information previously stored in memory, so it may be that having too much information may hinder performing everyday working memory tasks.

[635] Saxe, M. D., Malleret G., Vronskaya S., Mendez I., Garcia D. A., Sofroniew M. V., et al.
(2007).  Paradoxical influence of hippocampal neurogenesis on working memory.
Proceedings of the National Academy of Sciences. 104(11), 4642 - 4646.

Full text is available at http://www.pnas.org/cgi/reprint/104/11/4642
http://www.physorg.com/news94384934.html
http://www.sciencedaily.com/releases/2007/03/070329092022.htm
http://www.eurekalert.org/pub_releases/2007-03/cumc-nrs032807.php

Implicit stereotypes and gender identification may affect female math performance

Another study has come out showing that women enrolled in an introductory calculus course who possessed strong implicit gender stereotypes, (for example, automatically associating "male" more than "female" with math ability and math professions) and were likely to identify themselves as feminine, performed worse relative to their female counterparts who did not possess such stereotypes and who were less likely to identify with traditionally female characteristics. Strikingly, a majority of the women participating in the study explicitly expressed disagreement with the idea that men have superior math ability, suggesting that even when consciously disavowing stereotypes, female math students are still susceptible to negative perceptions of their ability.

[969] Kiefer, A. K., & Sekaquaptewa D.
(2007).  Implicit stereotypes, gender identification, and math-related outcomes: a prospective study of female college students.
Psychological Science: A Journal of the American Psychological Society / APS. 18(1), 13 - 18.

http://www.eurekalert.org/pub_releases/2007-01/afps-isa012407.php

Reducing the racial achievement gap

And staying with the same theme, a study that came out six months ago, and recently reviewed on the excellent new Scientific American Mind Matters blog, revealed that a single, 15-minute intervention erased almost half the racial achievement gap between African American and white students. The intervention involved writing a brief paragraph about which value, from a list of values, was most important to them and why. The intervention improved subsequent academic performance for some 70% of the African American students, but none of the Caucasians. The study was repeated the following year with the same results. It is thought that the effect of the intervention was to protect against the negative stereotypes regarding the intelligence and academic capabilities of African Americans.

[1082] Cohen, G. L., Garcia J., Apfel N., & Master A.
(2006).  Reducing the Racial Achievement Gap: A Social-Psychological Intervention.
Science. 313(5791), 1307 - 1310.

Highly accomplished people more prone to failure than others when under stress

One important difference between those who do well academically and those who don’t is often working memory capacity. Those with a high working memory capacity find it easier to read and understand and reason, than those with a smaller capacity. However, a new study suggests there is a downside. Such people tend to heavily rely on their abundant supply of working memory and are therefore disadvantaged when challenged to solve difficult problems, such as mathematical ones, under pressure — because the distraction caused by stress consumes their working memory. They then fall back on the less accurate short-cuts that people with less adequate supplies of working memory tend to use, such as guessing and estimation. Such methods are not made any worse by working under pressure. In the study involving 100 undergraduates, performance of students with strong working memory declined to the same level as those with more limited working memory, when the students were put under pressure. Those with more limited working memory performed as well under added pressure as they did without the stress.

The findings were presented February 17 at the annual meeting of the American Association for the Advancement of Science.

http://www.eurekalert.org/pub_releases/2007-02/uoc-hap021607.php

Common gene version optimizes thinking but carries a risk

On the same subject, another study has found that the most common version of DARPP-32, a gene that shapes and controls a circuit between the striatum and prefrontal cortex, optimizes information filtering by the prefrontal cortex, thus improving working memory capacity and executive control (and thus, intelligence). However, the same version was also more prevalent among people who developed schizophrenia, suggesting that a beneficial gene variant may translate into a disadvantage if the prefrontal cortex is impaired. In other words, one of the things that make humans more intelligent as a species may also make us more vulnerable to schizophrenia.

[864] Kolachana, B., Kleinman J. E., Weinberger D. R., Meyer-Lindenberg A., Straub R. E., Lipska B. K., et al.
(2007).  Genetic evidence implicating DARPP-32 in human frontostriatal structure, function, and cognition.
Journal of Clinical Investigation. 117(3), 672 - 682.

http://www.sciencedaily.com/releases/2007/02/070208230059.htm
http://www.eurekalert.org/pub_releases/2007-02/niom-cgv020707.php

Anxiety adversely affects those who are most likely to succeed at exams

It has been thought that pressure harms performance on cognitive skills such as mathematical problem-solving by reducing the working memory capacity available for skill execution. However, a new study of 93 students has found that this applies only to those high in working memory. It appears that the advantage of a high working memory capacity disappears when that attention capacity is compromised by anxiety.

[355] Beilock, S. L., & Carr T. H.
(2005).  When high-powered people fail: working memory and "choking under pressure" in math.
Psychological Science: A Journal of the American Psychological Society / APS. 16(2), 101 - 105.

http://www.eurekalert.org/pub_releases/2005-02/bpl-wup020705.php

Memory-enhancing drugs for elderly may impair working memory and other executive functions

Drugs that increase the activity of an enzyme called protein kinase A improve long-term memory in aged mice and have been proposed as memory-enhancing drugs for elderly humans. However, the type of memory improved by this activity occurs principally in the hippocampus. A new study suggests that increased activity of this enzyme has a deleterious effect on working memory (which principally involves the prefrontal cortex). In other words, a drug that helps you remember a recent event may worsen your ability to remember what you’re about to do (to take an example).

[1404] Ramos, B. P., Birnbaum S. G., Lindenmayer I., Newton S. S., Duman R. S., & Arnsten A. F. T.
(2003).  Dysregulation of protein kinase a signaling in the aged prefrontal cortex: new strategy for treating age-related cognitive decline.
Neuron. 40(4), 835 - 845.

http://www.eurekalert.org/pub_releases/2003-11/naos-mdf110303.php

Sleep deprivation affects working memory

A recent study investigated the working memory capacities of individuals who were sleep-deprived. For nine days, 7 of the 12 participants slept four hours each night, and 5 slept for eight hours. Each morning, participants completed a computer task to measure how quickly they could access a list of numbers they had been asked to memorize. The list could be one, three, or five items long. Then participants were presented with a series of single digits and asked to answer "yes" or "no" to indicate whether each digit was one they had memorized. Those who slept eight hours a night steadily increased their working memory efficiency on this task, but those who slept only four hours a night failed to show any improvement in memory efficiency. Motor skill did not change across days for either group of participants.

The findings were presented at the Society for Neuroscience 2003 annual  conference.

http://www.eurekalert.org/pub_releases/2003-11/sfn-sfb_1111003.php

Cognitive impairment following bypass surgery may last longer than thought

More support for a link between cardiopulmonary bypass surgery and cognitive impairment comes from a new study. In particular, it seems, that attention may be most affected. The study also found evidence of longer-lasting cognitive decline than previously thought. Bypass patients also demonstrated poorer cognitive performance before the surgery, and it is now being suggested that it may be the disease itself that is the major problem, rather than the surgery itself. This is consistent with recent research connecting cardiovascular risk factors with risk factors for cognitive decline.

[716] Keith, J. R., Puente A. E., Malcolmson K. L., Tartt S., Coleman A. E., & Marks H. F.
(2002).  Assessing postoperative cognitive change after cardiopulmonary bypass surgery.
Neuropsychology. 16(3), 411 - 421.

http://www.eurekalert.org/pub_releases/2002-07/apa-lci070802.php

Cocaine may permanently damage learning abilities in developing fetuses

Two recent studies investigating the effect of pre-natal exposure to cocaine in rats suggest that children exposed to cocaine while in the womb may have permanent changes to the part of the brain that helps control attention and memory, leading to learning deficits and symptoms that are very much like attention deficit hyperactivity disorder.

[1270] Morrow, B. A., Elsworth J. D., & Roth R. H.
(2002).  Male rats exposed to cocaine in utero demonstrate elevated expression of Fos in the prefrontal cortex in response to environment.
Neuropsychopharmacology: Official Publication of the American College of Neuropsychopharmacology. 26(3), 275 - 285.

[264] Morrow, B. A., Elsworth J. D., & Roth R. H.
(2002).  Prenatal cocaine exposure disrupts non-spatial, short-term memory in adolescent and adult male rats.
Behavioural Brain Research. 129(1-2), 217 - 223.

http://www.eurekalert.org/pub_releases/2002-02/yu-ucd021802.php

tags problems: 

Visual Impairment

Older news items (pre-2010) brought over from the old website

Age-related eye disease associated with cognitive impairment

Age-related macular degeneration (AMD) is the leading cause of visual impairment in industrialized nations, and like Alzheimer's disease, involves the buildup of beta-amyloid peptides in the brain, as well as sharing similar vascular risk factors. A study of over 2000 older adults (69-97) has revealed an association between early-stage AMD and cognitive impairment, as assessed by the Digit Symbol Substitution Test (a test of attention and processing speed). There was no association with performance on the Modified Mini-Mental State Examination (used to assess dementia).
It’s worth noting that in the same journal two studies into the association between dietary fat intake and AMD appeared. The first, four-year, study involved over 6700 older adults and found that higher trans-unsaturated fat intake was associated with a higher incidence of AMD, while higher omega-3 fatty acid and higher olive oil intake were each associated with a lower incidence. The second, ten-year, study involving nearly 2500 older adults, found regular consumption of fish, greater intake of omega-3 fatty acids, and low intake of linoleic acid (perhaps because a higher intake implies a lower intake of omega-3 oils? linoleic acid is an omega-6 fatty acid), were all associated with a lower incidence of AMD. Fish and omega-3 oils have of course been similarly associated with lower rates of dementia and age-related cognitive impairment.

[447] Baker, M. L., Wang J J., Rogers S., Klein R., Kuller L. H., Larsen E. K., et al.
(2009).  Early age-related macular degeneration, cognitive function, and dementia: the Cardiovascular Health Study.
Archives of Ophthalmology. 127(5), 667 - 673.

[754] Chong, E. W. - T., Robman L. D., Simpson J. A., Hodge A. M., Aung K Z., Dolphin T. K., et al.
(2009).  Fat consumption and its association with age-related macular degeneration.
Archives of Ophthalmology. 127(5), 674 - 680.

[413] Tan, J. S. L., Wang J J., Flood V., & Mitchell P.
(2009).  Dietary fatty acids and the 10-year incidence of age-related macular degeneration: the Blue Mountains Eye Study.
Archives of Ophthalmology. 127(5), 656 - 665.

http://www.eurekalert.org/pub_releases/2009-05/jaaj-aed050709.php

Age-related vision problems may be associated with cognitive impairment

Age-related macular degeneration (AMD) develops when the macula, the portion of the eye that allows people to see in detail, deteriorates. An investigation into the relationship between vision problems and cognitive impairment in 2,946 patients has been carried out by The Age-Related Eye Disease Study (AREDS) Research Group. Tests were carried out every year for four years. Those who had more severe AMD had poorer average scores on cognitive tests, an association that remained even after researchers considered other factors, including age, sex, race, education, smoking, diabetes, use of cholesterol-lowering medications and high blood pressure. Average scores also decreased as vision decreased. It’s possible that there is a biological reason for the association; it is also possible that visual impairment reduces a person’s capacity to develop and maintain relationships and to participate in stimulating activities.

Chaves, P.H.M. et al. 2006. Association Between Mild Age-Related Eye Disease Study Research Group. 2006. Cognitive Impairment in the Age-Related Eye Disease Study: AREDS Report No. 16. Archives of Ophthalmology,124, 537-543.

http://www.eurekalert.org/pub_releases/2006-04/jaaj-avp040606.php

The reorganization of the visual cortex in congenitally blind people

Studies indicate that congenitally blind people have superior verbal memory abilities than the sighted. A new study helps us understand why this is so. Some 25% of the human brain is devoted to vision. Until now it was assumed that loss of vision rendered these regions useless. Now it appears that in those blind from birth, the part of the occipital cortex usually involved in vision is utilized for other purposes. Extensive regions in the occipital cortex, in particular the primary visual cortex, are activated not only during Braille reading, but also during performances of verbal memory tasks, such as recalling a list of abstract words. No such activation was found in a sighted control group. It also appears that the greater the occipital activation, the higher the scores in the verbal memory tests.

[944] Amedi, A., Raz N., Pianka P., Malach R., & Zohary E.
(2003).  Early /`visual/' cortex activation correlates with superior verbal memory performance in the blind.
Nat Neurosci. 6(7), 758 - 766.

http://www.eurekalert.org/pub_releases/2003-06/huoj-hur061703.php

tags problems: 

Forgetting Intentions

Older news items (pre-2010) brought over from the old website

Older people with the 'Alzheimer's gene' find it harder to remember intentions

It has been established that those with a certain allele of a gene called ApoE have a much greater risk of developing Alzheimer’s (those with this allele on both genes have 8 times the risk; those with the allele on one gene have 3 times the risk). Recent studies also suggest that such carriers are also more likely to show signs of deficits in episodic memory – but that these deficits are quite subtle. In the first study to look at prospective memory in seniors with the “Alzheimer’s gene”, involving 32 healthy, dementia-free adults between ages of 60 and 87, researchers found a marked difference in performance between those who had the allele and those who did not. The results suggest an exception to the thinking that ApoE status has only a subtle effect on cognition.

[1276] Driscoll, I., McDaniel M. A., & Guynn M. J.
(2005).  Apolipoprotein E and prospective memory in normally aging adults.
Neuropsychology. 19(1), 28 - 34.

http://www.eurekalert.org/pub_releases/2005-01/apa-opw011805.php

'Imagination' helps older people remember to comply with medical advice

A new study suggests a way to help older people remember to take medications and follow other medical advice. Researchers found older adults (aged 60 to 81) who spent a few minutes picturing how they would test their blood sugar were 50% more likely to actually do these tests on a regular basis than those who used other memory techniques. Participants were assigned to one of three groups. One group spent one 3-minute session visualizing exactly what they would be doing and where they would be the next day when they were scheduled to test their blood sugar levels. Another group repeatedly recited aloud the instructions for testing their blood. The last group were asked to write a list of pros and cons for testing blood sugar. All participants were asked not to use timers, alarms or other devices. Over 3 weeks, the “imagination” group remembered 76% of the time to test their blood sugar at the right times of the day compared to an average of 46% in the other two groups. They were also far less likely to go an entire day without testing than those in the other two groups.

[473] Liu, L. L., & Park D. C.
(2004).  Aging and medical adherence: the use of automatic processes to achieve effortful things.
Psychology and Aging. 19(2), 318 - 325.

http://www.eurekalert.org/pub_releases/2004-06/nioa-ho060104.php

Alcohol damages day-to-day memory function

A new study involving 763 participants (465 female, 298 males) used self-report questionnaires: the Prospective Memory Questionnaire (PMQ), the Everyday Memory Questionnaire (EMQ), and the UEL (University of East London) Recreational Drug Use Questionnaire, and found that heavy users of alcohol reported making consistently more errors than those who said that they consumed little or no alcohol. More specifically, those who reported higher levels of alcohol consumption were more likely to miss appointments, forget birthdays and pay bills on time (prospective memory), as well as more problems remembering whether they had done something, like locking the door or switching off the lights or oven, or where they had put items like house keys. The study also found a significant increase in reported memory problems by people who claimed to drink between 10 and 25 units each week in comparison to non-drinkers – this is within the ’safe drinking’ limits suggested by U.K. government guidelines.

Ling, L., Heffernan, T.M., Buchanan, T., Rodgers, J., Scholey, A.B. & Parrott, A.C. 2003. Effects of Alcohol on Subjective Ratings of Prospective and Everyday Memory Deficits. Alcoholism: Clinical and Experimental Research, 27(6), 970-974.

http://www.eurekalert.org/pub_releases/2003-06/ace-add060903.php

tags problems: 

Word-finding Problems

Older news items (pre-2010) brought over from the old website

Genetic cause for word-finding disease

Primary Progressive Aphasia is a little-known form of dementia in which people lose the ability to express themselves and understand speech. People can begin to show symptoms of PPA as early as in their 40's and 50's. A new study has found has discovered a gene mutation in two unrelated families in which nearly all the siblings suffered from PPA. The mutations were not observed in the healthy siblings or in more than 200 controls.

[1164] Hutton, M. L., Graff-Radford N. R., Mesulam M. Marsel, Johnson N., Krefft T. A., Gass J. M., et al.
(2007).  Progranulin Mutations in Primary Progressive Aphasia: The PPA1 and PPA3 Families.
Arch Neurol. 64(1), 43 - 47.

http://www.eurekalert.org/pub_releases/2007-01/nu-rdg011507.php

Word substitution mistakes have more to do with speech planning than with thought or attention problems

Why is it that we can look at something, know what it is and still call it by the wrong name? A new study suggests that the problem doesn’t lie in haste or a lack of attention, but rather in a fault in speech planning.

Griffin, Z.M. 2004. The eyes are right when the mouth is wrong. Psychological Science, 15 (12), 814-820.

http://www.eurekalert.org/pub_releases/2004-12/aps-sot120804.php

What causes word finding failures in young and older adults

tags problems: 

Source Memory Problems

Older news items (pre-2010) brought over from the old website

Older adults more likely to "remember" misinformation

In a study involving older adults (average age 75) and younger adults (average age 19), participants studied lists of paired related words, then viewed new lists of paired words, some the same as before, some different, and some with only one of the two words the same. In those cases, the "prime" word, which was presented immediately prior to the test, was plausible but incorrect. The older adults were 10 times more likely than young adults to accept the wrong word and falsely "remember" earlier studying that word. This was true even though older adults had more time to study the list of word pairs and attained a performance level equal to that of the young adults. Additionally, when told they had the option to "pass" when unsure of an answer, older adults rarely used the option. Younger adults did, greatly reducing their false recall. The findings reflect real-world reports of a rising incidence of scams perpetrated on the elderly, which rely on the victim’s poor memory and vulnerability to the power of suggestion.

[629] Jacoby, L. L., Bishara A. J., Hessels S., & Toth J. P.
(2005).  Aging, subjective experience, and cognitive control: dramatic false remembering by older adults.
Journal of Experimental Psychology. General. 134(2), 131 - 148.

http://www.eurekalert.org/pub_releases/2005-05/apa-gmc051005.php

Repeated product warnings are remembered as product recommendations

Warnings about particular products may have quite the opposite effect than intended. Because we retain a familiarity with encountered items far longer than details, the more often we are told a claim about a consumer item is false, the more likely we are to accept it as true a little further down the track. Research also reveals that older adults are more susceptible to this error. It is relevant to note that in the U.S. at least, some 80% of consumer fraud victims are over 65.

[489] Skurnik, I., Yoon C., Park D. C., & Schwarz N.
(2005).  How Warnings about False Claims Become Recommendations.
Journal of Consumer Research. 31(4), 713 - 724.

http://www.eurekalert.org/pub_releases/2005-03/uocp-nrr032905.php

Source-memory problems not an inevitable consequence of aging, but a function of frontal-lobe efficiency

Source memory is memory for the broad contextual aspects surrounding an event, such as who was speaking, or whether you learned something from a book or TV. Previous research has found that it is in this aspect of memory that older people tend to be particularly poor. In a study that compared older individuals with undergraduates, it was found that those who performed above average on frontal-lobe tests, showed no significant impairment of source memory, regardless of age. Those with below-average performance, tended to have impaired source memory (as a group). In other words, source-memory problems are not an inevitable consequence of aging, as has been widely thought, but rather are a function of frontal-lobe efficiency. The proportion of older adults who experience frontal-lobe decline, at what ages, and to what degree, is unknown at this time.
What’s more, when researchers required people to consider the relation between an item and its context (source), age differences in memory performance completely disappeared, suggesting older adults can learn strategies to remember the context better.

[626] Glisky, E. L., Rubin S. R., & Davidson P. S. R.
(2001).  Source Memory in Older Adults: An Encoding or Retrieval Problem?.
Journal of Experimental Psychology: Learning, Memory, and Cognition. 27(5), 1131 - 1146.

http://www.eurekalert.org/pub_releases/2001-09/apa-ada083101.php

tags problems: 

Pages

Subscribe to RSS - Problems