Exercise

How physical exercise and fitness improves your brain function

Physical activity linked to greater mental flexibility in older adults

  • A correlation has been found between physical activity in healthy older adults and more variable resting-state brain activity.
  • More variable resting-state activity in older adults has previously been linked to better cognition.
  • No such correlation was found between cardiorespiratory fitness and resting-state brain activity.
  • The finding supports previous evidence linking higher levels of physical activity in old age with better cognition and brain health.

A study involving 100 healthy older adults (aged 60-80) has found that those with higher levels of physical activity showed more variable spontaneous brain activity in certain brain regions (including the precuneus, hippocampus, medial and lateral prefrontal, and temporal cortices). Moreover, this relationship was positively associated with better white-matter structure.

Higher rates of activity when the brain is “at rest” have previously been shown to be associated with better cognitive performance in older adults, especially in IQ and memory.

The brain regions showing this relationship all play an important role in major resting-state networks, including the default mode network, the motor network, and networks associated with executive control and salience detection. They are all highly connected.

Participants' physical activity over a week was measured using accelerometers. Cardiorespiratory fitness was also assessed. Participants were generally not very active and not very fit.

The findings add to evidence linking higher fitness and physical activity with greater brain integrity and higher cognitive performance. They are also consistent with previous studies showing an increase in such brain signal fluctuations among older adults participating in physical exercise programs.

Interestingly, level of brain activity fluctuations was only correlated with physical activity, not with cardiorespiratory fitness. This indicates that CRF and physical exercise cannot be considered as functional equivalents — there must be some aspects of physical activity not captured by a measure of cardiorespiratory fitness.

It's also worth noting that there wasn't a significant correlation between sedentary time and resting-state brain activity fluctuations, although this may be because the participants all showed not-very-dissimilar levels of sedentary time.

http://www.eurekalert.org/pub_releases/2015-08/uoia-slp082415.php

Reference: 

Burzynska AZ, Wong CN, Voss MW, Cooke GE, Gothe NP, Fanning J, et al. (2015) Physical Activity Is Linked to Greater Moment-To-Moment Variability in Spontaneous Brain Activity in Older Adults. PLoS ONE 10(8): e0134819. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0134819

Topics: 

tags development: 

tags lifestyle: 

Limited benefit of physical activity for preventing cognitive decline

  • A large study of older adults (70+) found no cognitive benefit from a regular exercise program, compared to another social & mental intervention.
  • However, a subset of participants (those over 80, and those with poor physical function at the beginning of the study) did show improvement in executive function.
  • Participants in both programs showed no cognitive decline over the two-year period, suggesting both interventions were helpful.

A large, two-year study challenges the evidence that regular exercise helps prevent age-related cognitive decline.

The study involved 1,635 older adults (70-89) who were enrolled in the Lifestyle Interventions and Independence for Elders (LIFE) study. They were sedentary adults who were at risk for mobility disability but able to walk about a quarter mile. Participants had no significant cognitive impairment (as measured by the MMSE) at the beginning of the study. Around 90% (1476) made it to the end of the study, and were included in the analysis.

Half the participants were randomly assigned to a structured, moderate-intensity physical activity program that included walking, resistance training, and flexibility exercises, and the other half to a health education program of educational workshops and upper-extremity stretching.

In the physical activity condition, participants were expected to attend 2 center-based visits per week and perform home-based activity 3 to 4 times per week. The sessions progressed toward a goal of 30 minutes of walking at moderate intensity, 10 minutes of primarily lower-extremity strength training with ankle weights, and 10 minutes of balance training and large muscle group flexibility exercises.

The health education group attended weekly health education workshops during the first 26 weeks of the intervention and at least monthly sessions thereafter. Sessions lasted 60 to 90 minutes and consisted of interactive and didactic presentations, facilitator demonstrations, guest speakers, or field trips. Sessions included approximately 10 minutes of group discussion and interaction and 5 to 10 minutes of upper-extremity stretching and flexibility exercises.

Cognitive assessments were made at the beginning of the study and at 24 months, as well as a computerized assessment at either 18 or 30 months.

At the end of the study, there was no significant difference in cognitive score, or incidence of MCI or dementia, between the two groups. However, those in the exercise group who were 80 years or older ( 307) and those with poorer baseline physical performance ( 328) did show significantly better performance in executive function.

Executive function is not only a critical function in retaining the ability to live independently, research has also shown that it is the most sensitive cognitive domain to physical exercise.

Note also that there was no absolute control group — that is, people who received no intervention. Both groups showed remarkably stable cognitive scores over the two years, suggesting that both interventions were in fact effective in “holding the line”.

While this finding is disappointing and a little surprising, it is not entirely inconsistent with the research. Studies into the benefits of physical exercise for fighting age-related cognitive decline and dementia have produced mixed results. It does seem clear that the relationship is not a simple one, and what's needed is a better understanding of the complexities of the relationship. For example, elements of exercise that are critical, and the types of people (genes; health; previous social, physical, and cognitive attributes) that may benefit.

http://www.eurekalert.org/pub_releases/2015-08/tjnj-eop082115.php

Reference: 

Topics: 

tags development: 

tags lifestyle: 

tags problems: 

Aerobic exercise improves cognition in healthy older adults

A six-month pilot study involving 101 healthy older adults (65+), who were randomly put into one of three exercise interventions or a no-change control, has found that the exercise groups all showed significant improvement in visual-spatial processing and attention, with more improvement in visual-spatial processing occurring in those with higher levels of exercise.

The benefits of increasing exercise for visual-spatial processing, however, were fully accounted for by improvements in cardiorespiratory fitness, suggesting that exercise intensity may be more important than exercise duration.

The researchers suggest that individualized exercise programs designed to maximize cardiorespiratory fitness will be of greatest benefit.

The three exercise levels were: 150 minutes per week (the recommended level); 75 minutes per week; 225 minutes per week. Exercise was supervised, and mainly consisted of treadmill walking of moderate intensity. Participants exercised 3-5 days a week. Performance in five cognitive domains were tested: Verbal Memory, Visuospatial Processing, Simple Attention, Set Maintenance and Shifting, and Reasoning.

Note that only 77 individuals made it through the trial, and also adhered to at least 80% of the alloted amount of exercise. Unsurprisingly, the 225-minute group had the most trouble meeting the allotment: 70% of the group managed it, compared to 82% of the 75-minute group, and 85% of the 150-minute group. It's worth noting that, of those who met the 80% requirement, almost all (>95%) fully adhered to the prescription, and this was true across all exercise prescriptions.

http://www.eurekalert.org/pub_releases/2015-07/uokm-eci071515.php

Reference: 

Vidoni ED, Johnson DK, Morris JK, Van Sciver A, Greer CS, Billinger SA, et al. (2015) Dose-Response of Aerobic Exercise on Cognition: A Community-Based, Pilot Randomized Controlled Trial. PLoS ONE 10(7): e0131647. doi:10.1371/journal.pone.0131647

Topics: 

tags lifestyle: 

Gentle exercise during chemotherapy has significant cognitive benefits

A six-week study involving 619 cancer patients has found that those who took part in a simple home-based exercise program significantly reduced their cognitive impairment ('chemo-brain'). The EXCAP (Exercise for Cancer Patients) was developed by the researchers some years ago, and this evaluation was a phase III randomized study for early-stage chemotherapy patients. Half the group were given standard care (no exercise during chemotherapy), while the others were given instruction to walk daily and carry out low-to-moderate resistance band training for 10 minutes, 5 days a week.

This very modest increase in exercise (the 'no-exercise' group walked on average 3,800 steps a day, while the excap group walked on average 5,000 steps) had significant effects:

  • lower levels of inflammation
  • less brain 'fogginess'
  • fewer memory problems
  • greater mobility.

Exercisers who received chemotherapy in 2-week cycles reported the greatest benefits, compared to other timing cycles.

http://www.futurity.org/exercise-chemotherapy-932492/

http://www.urmc.rochester.edu/news/story/index.cfm?id=4333

Reference: 

The findings were presented at the American Society of Clinical Oncology (ASCO) annual meeting on June 1, by Karen Mustian.

Source: 

Topics: 

tags lifestyle: 

tags problems: 

Diabetes & cognitive impairment

A review and a large study have recently added to the growing evidence that type 2 diabetes is not only a risk factor for Alzheimer's, but is also linked to poorer cognitive function and faster age-related cognitive decline. The amount of this also seems to be related to glucose control in a dose-dependent manner.

Somewhat surprisingly, there is evidence that the association is not linked to vascular factors, but is in significant part explained by neuron loss. That part is not surprising — brains 'naturally' shrink with age, and growing evidence points to the importance of exercise (which promotes the growth of new neurons) in combating that loss. If diabetics are less likely to exercise (which seems likely, given the strong association with obesity), this may, at least in part, account for the greater brain atrophy.

Type 2 diabetes linked to poorer executive function

A meta-analysis of 60 studies involving a total of 9815 people with Type 2 diabetes and 69,254 control individuals, has found a small but reliable association between diabetes and poorer executive function. This was true across all aspects of executive function tested: verbal fluency, mental flexibility, inhibition, working memory, and attention.

Unfortunately, effective diabetes management does depend quite heavily on executive function, making this something of a negative feedback cycle.

http://www.eurekalert.org/pub_releases/2015-02/uow-t2d021315.php

Diabetes in midlife linked to greater age-related cognitive decline

A long-running U.S. study involving 13,351 adults, has found that cognitive decline over 19 years was 19% greater among those who had diabetes in midlife. Moreover, cognitive decline increased with higher hemoglobin A1c level and longer duration of diabetes.

At the beginning of the study, participants were aged 48-67 (median: 57), and 13% of participants were diagnosed as diabetic. Cognition was tested using delayed word recall, digit symbol substitution, and word fluency tests.

The findings support the view that glucose control in midlife is important to protect against cognitive decline later in life.

http://www.jwatch.org/na36497/2014/12/31/diabetes-midlife-associated-with-accelerated-cognitive

http://www.sciencedaily.com/releases/2014/12/141201191253.htm

http://www.psychiatryadvisor.com/diabetes-may-accelerate-cognitive-decline/article/386208/

Brain atrophy linked with cognitive decline in diabetes

A 2013 study showed that almost half of the cognitive impairment seen among diabetics was explained by their loss of gray matter.

Brain scans and cognitive tests of 350 people with Type 2 diabetes and 363 people without diabetes revealed that those with diabetes had more cerebral infarcts and greater shrinkage in specific regions of the brain. Diabetes was associated with poorer visuospatial memory, planning, visual memory, and processing speed. These associations were independent of vascular risk factors, cerebrovascular lesions, or white matter volume, but almost half of the associations were explained by the shrinkage of gray matter in the hippocampus and across the brain.

http://www.eurekalert.org/pub_releases/2013-09/mu-bal091113.php

Reference: 

Vincent, C. & Hall, P.A. 2015. Executive Function in Adults With Type 2 Diabetes: A Meta-Analytic Review. Psychosomatic Medicine, doi: 10.1097/PSY.0000000000000103

[3910] Rawlings, A. M., A. Sharrett R., Schneider A. L. C., Coresh J., Albert M., Couper D., et al.
(2014).  Diabetes in midlife and cognitive change over 20 years: a cohort study.
Annals of Internal Medicine. 161(11), 785 - 793.

[3909] Moran, C., Phan T. G., Chen J., Blizzard L., Beare R., Venn A., et al.
(2013).  Brain Atrophy in Type 2 Diabetes Regional distribution and influence on cognition.
Diabetes Care. 36(12), 4036 - 4042.

Topics: 

tags lifestyle: 

tags problems: 

Exercise beneficial for dementia

A new review from The Cochrane Library, based on six trials involving 289 people, has concluded that exercise can improve cognition and the ability of older people with dementia to carry out daily activities, such as walking short distances or getting up from a chair. However, there was no clear effect of exercise on depression in older people with dementia, and the reviewers say that more evidence is needed to understand how exercise could reduce the burden on family caregivers and health systems.

http://www.eurekalert.org/pub_releases/2013-12/w-ebf120313.php

Reference: 

Forbes D, Thiessen EJ, Blake CM, Forbes SC, Forbes S. Exercise programs for people with dementia. Cochrane Database of Systematic Reviews 2013, Issue 12. Art. No.: CD006489. DOI: 10.1002/14651858.CD006489.pub3.

Topics: 

tags lifestyle: 

tags problems: 

These 5 healthy habits reduce dementia risk

There are five healthy behaviors that appear to significantly reduce the risk of dementia,

A 35-year study that monitored the healthy behaviors of 2,235 Welsh men aged 45 to 59 at the beginning of the study has found that those who consistently followed at least four of these five healthy behaviors — regular exercise, no smoking, acceptable BMI, high fruit and vegetable intake, and low/moderate alcohol intake — experienced a 60% reduction in dementia and cognitive decline compared with people who followed none. They also had 70% fewer instances of diabetes, heart disease, and stroke,.

Exercise was the most important of these factors.

Only 5% of the men were living a healthy lifestyle (i.e., following at least 4 of these healthy behaviors). Just under half of the 2235 men were non-smokers (46%), and around a third (35%) had an acceptable BMI. Only 15 men ate their “5+” daily (!!), so the requirement was reduced to only three or more portions of fruit and vegetables, enabling 18% to reach it. 39% exercised regularly and 59% reported alcohol intake within the guidelines. Only two men managed five healthy behaviors, and 109 managed four; 19% managed three; 36% two; 31% one; 8% couldn’t manage any.

http://www.futurity.org/five-healthy-behaviors-can-reduce-dementia-risk/

http://www.eurekalert.org/pub_releases/2013-12/cu-3ys120913.php

Reference: 

Elwood, P., Galante, J., Pickering, J., Palmer, S., Bayer, A., Ben-Shlomo, Y., … Gallacher, J. (2013). Healthy Lifestyles Reduce the Incidence of Chronic Diseases and Dementia: Evidence from the Caerphilly Cohort Study. PLoS ONE, 8(12), e81877. doi:10.1371/journal.pone.0081877

Topics: 

tags lifestyle: 

tags problems: 

Exercise helps MCI

A pilot study involving 17 older adults with mild cognitive impairment and 18 controls (aged 60-88; average age 78) has found that a 12-week exercise program significantly improved performance on a semantic memory task, and also significantly improved brain efficiency, for both groups.

The program involved treadmill walking at a moderate intensity. The semantic memory tasks involved correctly recognizing names of celebrities well known to adults born in the 1930s and 40s (difficulty in remembering familiar names is one of the first tasks affected in Alzheimer’s), and recalling words presented in a list. Brain efficiency was demonstrated by a decrease in the activation intensity in the 11 brain regions involved in the memory task. The brain regions with improved efficiency corresponded to those involved in Alzheimer's disease, including the precuneus region, the temporal lobe, and the parahippocampal gyrus.

Participants also improved their cardiovascular fitness, by about 10%.

http://www.eurekalert.org/pub_releases/2013-07/uom-emb073013.php

Reference: 

Smith, J.C. et al. 2013. Semantic Memory Functional MRI and Cognitive Function After Exercise Intervention in Mild Cognitive Impairment. Journal of Alzheimer’s Disease, 37 (1), 197-215.

Topics: 

tags lifestyle: 

tags problems: 

Pages

Subscribe to RSS - Exercise