spatial

Confidence is key to women's spatial skills

March, 2012

A series of experiments has found that confidence fully accounted for women’s poorer performance on a mental rotation task.

One of the few established cognitive differences between men and women lies in spatial ability. But in recent years, this ‘fact’ has been shaken by evidence that training can close the gap between the genders. In this new study, 545 students were given a standard 3D mental rotation task, while at the same time manipulating their confidence levels.

In the first experiment, 70 students were asked to rate their confidence in each answer. They could also choose not to answer. Confidence level was significantly correlated with performance both between and within genders.

On the face of it, these findings could be explained, of course, by the ability of people to be reliable predictors of their own performance. However, the researchers claim that regression analysis shows clearly that when the effect of confidence was taken into account, gender differences were eliminated. Moreover, gender significantly predicted confidence.

But of course this is still just indicative.

In the next experiment, however, the researchers tried to reduce the effect of confidence. One group of 87 students followed the same procedure as in the first experiment (“omission” group), except they were not asked to give confidence ratings. Another group of 87 students was not permitted to miss out any questions (“commission” group). The idea here was that confidence underlay the choice of whether or not to answer a question, so while the first group should perform similarly to those in the first experiment, the second group should be less affected by their confidence level.

This is indeed what was found: men significantly outperformed women in the first condition, but didn’t in the second condition. In other words, it appears that the mere possibility of not answering makes confidence an important factor.

In the third experiment, 148 students replicated the commission condition of the second experiment with the additional benefit of being allowed unlimited time. Half of the students were required to give confidence ratings.

The advantage of unlimited time improved performance overall. More importantly, the results confirmed those produced earlier: confidence ratings produced significant gender differences; there were no gender differences in the absence of such ratings.

In the final experiment, 153 students were required to complete an intentionally difficult line judgment task, which men and women both carried out at near chance levels. They were then randomly informed that their performance had been either above average (‘high confidence’) or below average (‘low confidence’). Having manipulated their confidence, the students were then given the standard mental rotation task (omission version).

As expected (remember this is the omission procedure, where subjects could miss out answers), significant gender differences were found. But there was also a significant difference between the high and low confidence groups. That is, telling people they had performed well (or badly) on the first task affected how well they did on the second. Importantly, women in the high confidence group performed as well as men in the low confidence group.

Reference: 

Source: 

Topics: 

tags memworks: 

Latest London taxi driver study shows brain changes driven by learning

January, 2012
  • A comparison of the brains of London taxi drivers before and after their lengthy training shows clearly that the increase in hippocampal gray matter develops with training, but this may come at the expense of other brain functions.

The evidence that adult brains could grow new neurons was a game-changer, and has spawned all manner of products to try and stimulate such neurogenesis, to help fight back against age-related cognitive decline and even dementia. An important study in the evidence for the role of experience and training in growing new neurons was Maguire’s celebrated study of London taxi drivers, back in 2000.

The small study, involving 16 male, right-handed taxi drivers with an average experience of 14.3 years (range 1.5 to 42 years), found that the taxi drivers had significantly more grey matter (neurons) in the posterior hippocampus than matched controls, while the controls showed relatively more grey matter in the anterior hippocampus. Overall, these balanced out, so that the volume of the hippocampus as a whole wasn’t different for the two groups. The volume in the right posterior hippocampus correlated with the amount of experience the driver had (the correlation remained after age was accounted for).

The posterior hippocampus is preferentially involved in spatial navigation. The fact that only the right posterior hippocampus showed an experience-linked increase suggests that the right and left posterior hippocampi are involved in spatial navigation in different ways. The decrease in anterior volume suggests that the need to store increasingly detailed spatial maps brings about a reorganization of the hippocampus.

But (although the experience-related correlation is certainly indicative) it could be that those who manage to become licensed taxi drivers in London are those who have some innate advantage, evidenced in a more developed posterior hippocampus. Only around half of those who go through the strenuous training program succeed in qualifying — London taxi drivers are unique in the world for being required to pass through a lengthy training period and pass stringent exams, demonstrating their knowledge of London’s 25,000 streets and their idiosyncratic layout, plus 20,000 landmarks.

In this new study, Maguire and her colleague made a more direct test of this question. 79 trainee taxi drivers and 31 controls took cognitive tests and had their brains scanned at two time points: at the beginning of training, and 3-4 years later. Of the 79 would-be taxi drivers, only 39 qualified, giving the researchers three groups to compare.

There were no differences in cognitive performance or brain scans between the three groups at time 1 (before training). At time 2 however, when the trainees had either passed the test or failed to acquire the Knowledge, those trainees that qualified had significantly more gray matter in the posterior hippocampus than they had had previously. There was no change in those who failed to qualify or in the controls.

Unsurprisingly, both qualified and non-qualified trainees were significantly better at judging the spatial relations between London landmarks than the control group. However, qualified trainees – but not the trainees who failed to qualify – were worse than the other groups at recalling a complex visual figure after 30 minutes (see here for an example of such a figure). Such a finding replicates previous findings of London taxi drivers. In other words, their improvement in spatial memory as it pertains to London seems to have come at a cost.

Interestingly, there was no detectable difference in the structure of the anterior hippocampus, suggesting that these changes develop later, in response to changes in the posterior hippocampus. However, the poorer performance on the complex figure test may be an early sign of changes in the anterior hippocampus that are not yet measurable in a MRI.

The ‘Knowledge’, as it is known, provides a lovely real-world example of expertise. Unlike most other examples of expertise development (e.g. music, chess), it is largely unaffected by childhood experience (there may be some London taxi drivers who began deliberately working on their knowledge of London streets in childhood, but it is surely not common!); it is developed through a training program over a limited time period common to all participants; and its participants are of average IQ and education (average school-leaving age was around 16.7 years for all groups; average verbal IQ was around or just below 100).

So what underlies this development of the posterior hippocampus? If the qualified and non-qualified trainees were comparable in education and IQ, what determined whether a trainee would ‘build up’ his hippocampus and pass the exams? The obvious answer is hard work / dedication, and this is borne out by the fact that, although the two groups were similar in the length of their training period, those who qualified spent significantly more time training every week (an average of 34.5 hours a week vs 16.7 hours). Those who qualified also attended far more tests (an average of 15.6 vs 2.6).

While neurogenesis is probably involved in this growth within the posterior hippocampus, it is also possible that growth reflects increases in the number of connections, or in the number of glia. Most probably (I think), all are involved.

There are two important points to take away from this study. One is its clear demonstration that training can produce measurable changes in a brain region. The other is the indication that this development may come at the expense of other regions (and functions).

Reference: 

Source: 

Topics: 

tags: 

tags memworks: 

tags strategies: 

How your hands affect your thinking

October, 2011

Two recent studies in embodied cognition show that hand movements and hand position are associated with less abstract thinking.

I always like studies about embodied cognition — that is, about how what we do physically affects how we think. Here are a couple of new ones.

The first study involved two experiments. In the first, 86 American college students were asked questions about gears in relation to each other. For example, “If five gears are arranged in a line, and you move the first gear clockwise, what will the final gear do?” The participants were videotaped as they talked their way through the problem. But here’s the interesting thing: half the students wore Velcro gloves attached to a board, preventing them from moving their hands. The control half were similarly prevented from moving their feet — giving them the same experience of restriction without the limitation on hand movement.

Those who gestured commonly used perceptual-motor strategies (simulation of gear movements) in solving the puzzles. Those who were prevented from gesturing, as well as those who chose not to gesture, used abstract, mathematical strategies much more often.

The second experiment confirmed the results with 111 British adults.

The findings are consistent with the hypothesis that gestures highlight and structure perceptual-motor information, and thereby make such information more likely to be used in problem solving.

That can be helpful, but not always. Even when we are solving problems that have to do with motion and space, more abstract strategies may sometimes be more efficient, and thus an inability to use the body may force us to come up with better strategies.

The other study is quite different. In this study, college students searched for a single letter embedded within images of fractals and other complex geometrical patterns. Some did this while holding their hands close to the images; others kept their hands in their laps, far from the images. This may sound a little wacky, but previous research has shown that perception and attention are affected by how close our hands are to an object. Items near our hands tend to take priority.

In the first experiment, eight randomly chosen images were periodically repeated 16 times, while the other 128 images were only shown once. The target letter was a gray “T” or “L”; the images were colorful.

As expected, finding the target letter was faster the more times the image had been presented. Hand position didn’t affect learning.

In the second experiment, a new set of students were shown the same shown-once images, while 16 versions of the eight repeated images were created. These versions varied in their color components. In this circumstance, learning was slower when hands were held near the images. That is, people found it harder to recognize the commonalities among identical but differently colored patterns, suggesting they were too focused on the details to see the similarities.

These findings suggest that processing near the hands is biased toward item-specific detail. This is in keeping with earlier suggestions that the improvements in perception and attention near the hands are item-specific. It may indeed be that this increased perceptual focus is at the cost of higher-order function such as memory and learning. This would be consistent with the idea that there are two largely independent visual streams, one of which is mainly concerned with visuospatial operations, and the other of which is primarily for more cognitive operations (such as object identification).

All this may seem somewhat abstruse, but it is worryingly relevant in these days of hand-held technological devices.

The point of both these studies is not that one strategy (whether of hand movements or hand position) is wrong. What you need to take away is the realization that hand movements and hand position can affect the way you approach problems, and the things you perceive. Sometimes you want to take a more physical approach to a problem, or pick out the fine details of a scene or object — in these cases, moving your hands, or holding something in or near your hands, is a good idea. Other times you might want to take a more abstract/generalized approach — in these cases, you might want to step back and keep your body out of it.

Reference: 

Source: 

Topics: 

tags memworks: 

tags strategies: 

tags study: 

Another challenge to idea that men are better at spatial thinking

October, 2011

A cross-cultural study finds a significant gender difference on a simple puzzle problem for one culture but no gender difference for another. The difference was only partly explained by education.

Here’s an intriguing approach to the long-standing debate about gender differences in spatial thinking. The study involved 1,279 adults from two cultural groups in India. One of these groups was patrilineal, the other matrilineal. The volunteers were given a wooden puzzle to assemble as quickly as they could.

Within the patrilineal group, men were on average 36% faster than women. Within the matrilineal group, however, there was no difference between the genders.

I have previously reported on studies showing how small amounts of spatial training can close the gap in spatial abilities between the genders. It has been argued that in our culture, males are directed toward spatial activities (construction such as Lego; later, video games) more than females are.

In this case, the puzzle was very simple. However, general education was clearly one factor mediating this gender difference. In the patrilineal group, males had an average 3.67 more years of education, while in the matrilineal group, men and women had the same amount of education. When education was included in the statistical analysis, a good part of the difference between the groups was accounted for — but not all.

While we can only speculate about the remaining cause, it is interesting to note that, among the patrilineal group, the gender gap was decidedly smaller among those who lived in households not wholly owned by males (in the matrilineal group, men are not allowed to own property, so this comparison cannot be made).

It is also interesting to note that the men in the matrilineal group were faster than the men in the patrilineal group. This is not a function of education differences, because education in the matrilineal group was slightly less than that of males in the patrilineal group.

None of the participants had experience with puzzle solving, and both groups had similar backgrounds, being closely genetically related and living in villages geographically close. Participants came from eight villages: four patrilineal and four matrilineal.

Reference: 

[2519] Hoffman, M., Gneezy U., & List J. A.
(2011).  Nurture affects gender differences in spatial abilities.
Proceedings of the National Academy of Sciences. 108(36), 14786 - 14788.

Source: 

Topics: 

tags memworks: 

Tetris can reduce PTSD flashbacks

January, 2011

Playing Tetris shortly after a traumatic event reduced flashbacks, but playing a word-based quiz increased the number of flashbacks.

Following a study showing that playing Tetris after traumatic events could reduce memory flashbacks in healthy volunteers, two experiments have found playing Tetris after viewing traumatic images significantly reduced flashbacks while playing Pub Quiz Machine 2008 (a word-based quiz game) increased the frequency of flashbacks. In the experiments, volunteers were shown a film that included traumatic images of injury.

In the first experiment, after waiting for 30 minutes, 20 volunteers played Tetris for 10 minutes, 20 played Pub Quiz for 10 minutes and 20 did nothing. In the second experiment, this wait was extended to four hours, with 25 volunteers in each group.

In both experiments, those who played Tetris had significantly fewer flashbacks that the other two groups, and all groups were equally able to recall specific details of the film. Flashbacks were monitored for a week.

It is thought that with traumatic information, perceptual information is emphasized over conceptual information, meaning we are less likely to remember the experience of being in a high-speed road traffic collision as a coherent story, and more likely to remember it by the flash of headlights and noise of a crash. This perceptual information then pops up repeatedly in the victim's mind in the form of flashbacks to the trauma causing great emotional distress, as little conceptual meaning has been attached to them. If you experience other events that involve similar information, during the time window in which the traumatic memories are being processed, that information will interfere with that processing.

Thus, the spatial tasks of Tetris (which involves moving and rotating shapes) are thought to compete with the images of trauma, while answering general knowledge questions in the Pub Quiz game competes with remembering the contextual meaning of the trauma, so the visual memories are reinforced and the flashbacks are increased.

Reference: 

Source: 

Topics: 

tags memworks: 

tags problems: 

Having a male twin improves mental rotation performance in females

October, 2010

A twin study suggests prenatal testosterone may be a factor in the innate male superiority in mental rotation*.

Because male superiority in mental rotation appears to be evident at a very young age, it has been suggested that testosterone may be a factor. To assess whether females exposed to higher levels of prenatal testosterone perform better on mental rotation tasks than females with lower levels of testosterone, researchers compared mental rotation task scores between twins from same-sex and opposite-sex pairs.

It was found that females with a male co-twin scored higher than did females with a female co-twin (there was no difference in scores between males from opposite-sex and same-sex pairs). Of course, this doesn’t prove that that the differences are produced in the womb; it may be that girls with a male twin engage in more male-typical activities. However, the association remained after allowing for computer game playing experience.

The study involved 804 twins, average age 22, of whom 351 females were from same-sex pairs and 120 from opposite-sex pairs. There was no significant difference between females from identical same-sex pairs compared to fraternal same-sex pairs.

* Please do note that ‘innate male superiority’ does NOT mean that all men are inevitably better than all women at this very specific task! My words simply reflect the evidence that the tendency of males to be better at mental rotation is found in infants as young as 3 months.

Reference: 

Source: 

Topics: 

tags: 

tags lifestyle: 

tags memworks: 

Gender gap in spatial ability can be reduced through training

October, 2010

Male superiority in mental rotation is the most-cited gender difference in cognitive abilities. A new study shows that the difference can be eliminated in 6-year-olds after a mere 8 weeks.

Following a monkey study that found training in spatial memory could raise females to the level of males, and human studies suggesting the video games might help reduce gender differences in spatial processing (see below for these), a new study shows that training in spatial skills can eliminate the gender difference in young children. Spatial ability, along with verbal skills, is one of the two most-cited cognitive differences between the sexes, for the reason that these two appear to be the most robust.

This latest study involved 116 first graders, half of whom were put in a training program that focused on expanding working memory, perceiving spatial information as a whole rather than concentrating on details, and thinking about spatial geometric pictures from different points of view. The other children took part in a substitute training program, as a control group. Initial gender differences in spatial ability disappeared for those who had been in the spatial training group after only eight weekly sessions.

Previously:

A study of 90 adult rhesus monkeys found young-adult males had better spatial memory than females, but peaked early. By old age, male and female monkeys had about the same performance. This finding is consistent with reports suggesting that men show greater age-related cognitive decline relative to women. A second study of 22 rhesus monkeys showed that in young adulthood, simple spatial-memory training did not help males but dramatically helped females, raising their performance to the level of young-adult males and wiping out the gender gap.

Another study showing that expert video gamers have improved mental rotation skills, visual and spatial memory, and multitasking skills has led researchers to conclude that training with video games may serve to reduce gender differences in visual and spatial processing, and some of the cognitive declines that come with aging.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags lifestyle: 

tags memworks: 

tags strategies: 

Connection between navigation, object location, & autobiographical memory

January, 2010
  • The existence of specialized neurons involved in spatial memory has now been found in humans, and appear to also help with object location and autobiographical memory.

Rodent studies have demonstrated the existence of specialized neurons involved in spatial memory. These ‘grid cells’ represent where an animal is located within its environment, firing in patterns that show up as geometrically regular, triangular grids when plotted on a map of a navigated surface. Now for the first time, evidence for these cells has been found in humans. Moreover, those with the clearest signs of grid cells performed best in a virtual reality spatial memory task, suggesting that the grid cells help us to remember the locations of objects. These cells, located particularly in the entorhinal cortex, are also critical for autobiographical memory, and are amongst the first to be affected by Alzheimer's disease, perhaps explaining why getting lost is one of the most common early symptoms.

Reference: 

[378] Doeller, C. F., Barry C., & Burgess N.
(2010).  Evidence for grid cells in a human memory network.
Nature. 463(7281), 657 - 661.

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

Sense of direction may be innate

July, 2010
  • A finding that navigational and spatial neurons are already tuned in newborn rats lends weight to the theory that a pre-wired spatial framework may provide a conceptual framework for experience in humans.

A rat study reveals that, for rats at least, an understanding of place and a sense of direction appears within two weeks of being born, seemingly independently of any experience of the world. The directional signal, which allows the animal to know which way it is facing, is already at adult levels as soon as it can be measured in newborn rats. Sense of place is also present early, but improves with age. Representations of distance appear a few days later. These processes depend on specialized cells in the hippocampus, which in humans plays a crucial role in long-term memory for events as well as spatial navigation. The findings fit in with the theory that a pre-wired spatial framework may provide a conceptual framework for experience.

Reference: 

Source: 

Topics: 

tags: 

tags memworks: 

Language helps people solve spatial problems

July, 2010

Signers reveal that more complex language helps you find a hidden object, providing more support for the theory that language shapes how we think and perceive.

Because Nicaraguan Sign Language is only about 35 years old, and still evolving rapidly, the language used by the younger generation is more complex than that used by the older generation. This enables researchers to compare the effects of language ability on other abilities. A recent study found that younger signers (in their 20s) performed better than older signers (in their 30s) on two spatial cognition tasks that involved finding a hidden object. The findings provide more support for the theory that language shapes how we think and perceive.

Reference: 

[1629] Pyers, J. E., Shusterman A., Senghas A., Spelke E. S., & Emmorey K.
(2010).  Evidence from an emerging sign language reveals that language supports spatial cognition.
Proceedings of the National Academy of Sciences. 107(27), 12116 - 12120.

Source: 

Topics: 

tags memworks: 

tags strategies: 

Pages

Subscribe to RSS - spatial
Error | About memory

Error

The website encountered an unexpected error. Please try again later.