visual memory

How mindset can improve vision

April, 2010

An intriguing set of experiments has showed how you can improve vision by manipulating mindset.

An intriguing set of experiments showing how you can improve perception by manipulating mindset found significantly improved vision when:

  • an eye chart was arranged in reverse order (the letters getting progressively larger rather than smaller);
  • participants were given eye exercises and told their eyes would improve with practice;
  • participants were told athletes have better vision, and then told to perform jumping jacks or skipping (seen as less athletic);
  • participants flew a flight simulator, compared to pretending to fly a supposedly broken simulator (pilots are believed to have good vision).

Reference: 

[158] Langer, E., Djikic M., Pirson M., Madenci A., & Donohue R.
(2010).  Believing Is Seeing.
Psychological Science. 21(5), 661 - 666.

Source: 

Topics: 

tags: 

tags memworks: 

tags problems: 

Encoding features of complex and unfamiliar objects

Journal Article: 

Modigliani, V., Loverock, D.S. & Kirson, S.R. (1998). Encoding features of complex and unfamiliar objects. American Journal Of Psychology, 111, 215-239.

  • We don't store in memory every detail of common objects.
  • Repeated exposures to an object don't necessarily result in remembering any more about them.

There is a pervasive myth that every detail of every experience we've ever had is recorded in memory. It is interesting to note therefore, that even very familiar objects, such as coins, are rarely remembered in accurate detail1.

We see coins every day, but we don't see them. What we remember about coins are global attributes, such as size and color, not the little details, such as which way the head is pointing, what words are written on it, etc. Such details are apparently noted only if the person's attention is specifically drawn to them.

There are several interesting conclusions that can be drawn from studies that have looked at the normal encoding of familiar objects:

  • you don't automatically get more and more detail each time you see a particular object
  • only a limited amount of information is extracted the first time you see the object
  • the various features aren't equally important
  • normally, global rather than detail features are most likely to be remembered

In the present study, four experiments investigated people's memories for drawings of oak leaves. Two different types of oak leaves were used - "red oak" and "white oak". Subjects were shown two drawings for either 5 or 60 seconds. The differences between the two oak leaves varied, either:

  • globally (red vs white leaf), or
  • in terms of a major feature (the same type of leaf, but varying in that twomajor lobes are combined in one leaf but not in the other), or
  • in terms of a minor feature (one small lobe eliminated in one but not in theother).

According to the principle of top-down encoding, the time needed to detect a difference between stimuli that differ in only one critical feature will increase as the level of that feature decreases (from a global to a major specific to a lower-grade specific feature).

The results of this study supported the view that top-down encoding occurs, and indicate that, unless attention is explicitly directed to specific features, the likelihood of encoding such features becomes less the lower its structural level. One of the experiments tested whether the size of the feature made a difference, and it was decided that it didn't.

References

1. Jones, G.V. 1990. Misremembering a familiar object: When left is not right. Memory & Cognition, 18, 174-182.

Jones, G.V. & Martin, M. 1992. Misremembering a familiar object: Mnemonic illusion, not drawing bias. Memory & Cognition, 20, 211-213.

Nickerson, R.S. & Adams, M.J. 1979. Long-term memory of a common object. Cognitive Psychology, 11, 287-307.

Topics: 

tags memworks: 

Pages

Subscribe to RSS - visual memory