encoding

Each memory experience biases how you approach the next one

September, 2012

A new study provides evidence that our decision to encode information as new or try and retrieve it from long-term memory is affected by how we treated the last bit of information processed.

Our life-experiences contain a wealth of new and old information. The relative proportions of these change, of course, as we age. But how do we know whether we should be encoding new information or retrieving old information? It’s easy if the information is readily accessible, but what if it’s not? Bear in mind that (especially as we get older) most information / experiences we meet share some similarity to information we already have.

This question is made even more meaningful when you consider that it is the same brain region — the hippocampus — that’s involved in both encoding and retrieval, and these two processes depend (it is thought) on two quite opposite processes. While encoding is thought to rely on pattern separation (looking for differences), retrieval is thought to depend on pattern completion.

A recent study looked at what happens in the brain when people rapidly switch between encoding new objects and retrieving recently presented ones. Participants were shown 676 pictures of objects and asked to identify each one as being shown for the first time (‘new’), being repeated (‘old’), or as a modified version of something shown earlier (‘similar’). Recognizing the similar items as similar was the question of interest, as these items contain both old and new information and so the brain’s choice between encoding and retrieval is more difficult.

What they found was that participants were more likely to recognize similar items as similar (rather than old) if they had viewed a new item on the preceding trial. In other words, the experience of a new item primed them to notice novelty. Or to put it in another way: context biases the hippocampus toward either pattern completion or pattern separation.

This was supported by a further experiment, in which participants were shown both the object pictures, and also learned associations between faces and scenes. Critically, each scene was associated with two different faces. In the next learning phase, participants were taught a new scene association for one face from each pair. Each face-scene learning trial was preceded by an object recognition trial (new and old objects were shown and participants had to identify them as old or new) — critically, either a new or old object was consistently placed before a specific face-scene association. In the final test phase, participants were tested on the new face-scene associations they had just learned, as well as the indirect associations they had not been taught (that is, between the face of each pair that had not been presented during the preceding phase, and the scene associated with its partnered face).

What this found was that participants were more likely to pair indirectly related faces if those faces had been consistently preceded by old objects, rather than new ones. Moreover, they did so more quickly when the faces had been preceded by old objects rather than new ones.

This was interpreted as indicating that the preceding experience affects how well related information is integrated during encoding.

What all this suggests is that the memory activities you’ve just engaged in bias your brain toward the same sort of activities — so whether or not you notice changes to a café or instead nostalgically recall a previous meal, may depend on whether you noticed anyone you knew as you walked down the street!

An interesting speculation by the researchers is that such a memory bias (which only lasts a very brief time) might be an adaptive mechanism, reflecting the usefulness of being more sensitive to changes in new environments and less sensitive to irregularities in familiar environments.

Reference: 

Source: 

Topics: 

tags memworks: 

How piano tuning changes the brain

September, 2012

In another example of how expertise in a specific area changes the brain, brain scans of piano tuners show which areas grow, and which shrink, with experience — and starting age.

I’ve reported before on how London taxi drivers increase the size of their posterior hippocampus by acquiring and practicing ‘the Knowledge’ (but perhaps at the expense of other functions). A new study in similar vein has looked at the effects of piano tuning expertise on the brain.

The study looked at the brains of 19 professional piano tuners (aged 25-78, average age 51.5 years; 3 female; 6 left-handed) and 19 age-matched controls. Piano tuning requires comparison of two notes that are close in pitch, meaning that the tuner has to accurately perceive the particular frequency difference. Exactly how that is achieved, in terms of brain function, has not been investigated until now.

The brain scans showed that piano tuners had increased grey matter in a number of brain regions. In some areas, the difference between tuners and controls was categorical — that is, tuners as a group showed increased gray matter in right hemisphere regions of the frontal operculum, the planum polare, superior frontal gyrus, and posterior cingulate gyrus, and reduced gray matter in the left hippocampus, parahippocampal gyrus, and superior temporal lobe. Differences in these areas didn’t vary systematically between individual tuners.

However, tuners also showed a marked increase in gray matter volume in several areas that was dose-dependent (that is, varied with years of tuning experience) — the anterior hippocampus, parahippocampal gyrus, right middle temporal and superior temporal gyrus, insula, precuneus, and inferior parietal lobe — as well as an increase in white matter in the posterior hippocampus.

These differences were not affected by actual chronological age, or, interestingly, level of musicality. However, they were affected by starting age, as well as years of tuning experience.

What these findings suggest is that achieving expertise in this area requires an initial development of active listening skills that is underpinned by categorical brain changes in the auditory cortex. These superior active listening skills then set the scene for the development of further skills that involve what the researchers call “expert navigation through a complex soundscape”. This process may, it seems, involve the encoding and consolidating of precise sound “templates” — hence the development of the hippocampal network, and hence the dependence on experience.

The hippocampus, apart from its general role in encoding and consolidating, has a special role in spatial navigation (as shown, for example, in the London cab driver studies, and the ‘parahippocampal place area’). The present findings extend that navigation in physical space to the more metaphoric one of relational organization in conceptual space.

The more general message from this study, of course, is confirmation for the role of expertise in developing specific brain regions, and a reminder that this comes at the expense of other regions. So choose your area of expertise wisely!

Reference: 

Source: 

Topics: 

tags: 

tags memworks: 

tags strategies: 

tags study: 

Rapamycin makes young mice learn better and prevents decline in old mice

July, 2012

Further evidence from mice studies that the Easter Island drug improves cognition, in young mice as well as old.

I have reported previously on research suggesting that rapamycin, a bacterial product first isolated from soil on Easter Island and used to help transplant patients prevent organ rejection, might improve learning and memory. Following on from this research, a new mouse study has extended these findings by adding rapamycin to the diet of healthy mice throughout their life span. Excitingly, it found that cognition was improved in young mice, and abolished normal cognitive decline in older mice.

Anxiety and depressive-like behavior was also reduced, and the mice’s behavior demonstrated that rapamycin was acting like an antidepressant. This effect was found across all ages.

Three "feel-good" neurotransmitters — serotonin, dopamine and norepinephrine — all showed significantly higher levels in the midbrain (but not in the hippocampus). As these neurotransmitters are involved in learning and memory as well as mood, it is suggested that this might be a factor in the improved cognition.

Other recent studies have suggested that rapamycin inhibits a pathway in the brain that interferes with memory formation and facilitates aging.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

Quick therapy may reduce post-traumatic stress when delivered immediately

July, 2012

A pilot study supports the value of brief cognitive therapy for victims of traumatic events, when delivered as soon as possible after the event. The benefit appears greatest for sexual assault victims.

A new study has found that, when delivered quickly, a modified form of prolonged exposure therapy reduces post-traumatic stress reactions and depression.

The study involved 137 patients being treated in the emergency room of a major trauma center in Atlanta. The patients were chosen from survivors of traumatic events such as rape, car or industrial accidents, and shooting or knife attacks. Participants were randomly assigned to either receive three sessions of therapy beginning in the emergency department (an average of 12 hours after the event), or assessment only. Stress reactions were assessed at 4 and 12 weeks, and depression at baseline and 4 weeks.

Those receiving the therapy reported significantly lower post-traumatic stress at 4 weeks and 12 weeks, and significantly lower depression at 4 weeks. Analysis of subgroups revealed that the therapy was most effective in rape victims. In the cases of transport accidents and physical (non-sexual) assault, the difference between therapy and assessment-only was only barely significant (for transport at 4 weeks) or non-significant. In both subgroups, the effect was decidedly less at 12 weeks than at 4 weeks.

The therapy, carried out by trained therapists, involved participants describing the trauma they had experienced while the therapist recorded the description. The bulk of the hour-long session was taken up with reliving and processing the experience. There were three sessions spaced a week apart. The patients were instructed to listen to their recordings every day, and 85% were compliant. The therapists also explained normal reactions to trauma, helped the patients look at obtrusive thoughts of guilt or responsibility, and taught them a brief breathing or relaxation technique and self care.

While this study doesn’t itself compare the effects of immediate vs delayed therapy, the assumption that delivering the therapy so soon after the trauma is a crucial factor in its success is in line with other research (mainly to do with fear-conditioning in rodent and human laboratory studies). Moreover, while brief cognitive-behavioral therapy has previously been shown to be effective with people diagnosed with acute stress disorder, such therapy is normally begun some 2-4 weeks after trauma, and a study of female assault survivors found that although such therapy did indeed accelerate recovery compared with supportive counseling, after 9 months, PTSD severity was similar in both groups.

Another, severe, limitation of this study is that the therapy involved multiple items. We cannot assume that it was the repeated re-experiencing of the event that is critical.

However, this study is only a pilot study, and its findings are instructive rather than decisive. But at the least it does support the idea that immediate therapy is likely to help victims of trauma recover more quickly.

One final, important, note: It should not, of course, be assumed that simply having the victim describe the events — say to police officers — is in itself therapeutic. Done badly, that experience may itself be traumatic.

Reference: 

Source: 

Topics: 

tags memworks: 

tags problems: 

Sleeping after learning is most effective

May, 2012

A new sleep study confirms the value of running through new material just before bedtime, particularly it seems when that material is being learned using mnemonics or by rote.

We know that we remember more 12 hours after learning if we have slept during that 12 hours rather than been awake throughout, but is this because sleep is actively helping us remember, or because being awake makes it harder to remember (because of interference and over-writing from other experiences). A new study aimed to disentangle these effects.

In the study, 207 students were randomly assigned to study 40 related or unrelated word pairs at 9 a.m. or 9 p.m., returning for testing either 30 minutes, 12 hours or 24 hours later.

As expected, at the 12-hour retest, those who had had a night’s sleep (Evening group) remembered more than those who had spent the 12 hours awake (Morning group). But this result was because memory for unrelated word pairs had deteriorated badly during 12 hours of wakefulness; performance on the related pairs was the same for the two groups. Performance on the related and unrelated pairs was the same for those who slept.

For those tested at 24 hours (participants from both groups having received both a full night of sleep and a full day of wakefulness), those in the Evening group (who had slept before experiencing a full day’s wakefulness) remembered significantly more than the Morning group. Specifically, the Evening group showed a very slight improvement over training, while the Morning group showed a pronounced deterioration.

This time, both groups showed a difference for related versus unrelated pairs: the Evening group showed some deterioration for unrelated pairs and a slightly larger improvement for related pairs; the Morning group showed a very small deterioration for related pairs and a much greater one for unrelated pairs. The difference between recall of related pairs and recall of unrelated pairs was, however, about the same for both groups.

In other words, unrelated pairs are just that much harder to learn than related ones (which we already know) — over time, learning them just before sleep vs learning early in the day doesn’t make any difference to that essential truth. But the former strategy will produce better learning for both types of information.

A comparison of the 12-hour and 24-hour results (this is the bit that will help us disentangle the effects of sleep and wakefulness) reveals that twice as much forgetting of unrelated pairs occurred during wakefulness in the first 12 hours, compared to wakefulness in the second 12 hours (after sleep), and 3.4 times more forgetting of related pairs (although this didn’t reach significance, the amount of forgetting being so much smaller).

In other words, sleep appears to slow the rate of forgetting that will occur when you are next awake; it stabilizes and thus protects the memories. But the amount of forgetting that occurred during sleep was the same for both word types, and the same whether that sleep occurred in the first 12 hours or the second.

Participants in the Morning and Evening groups took a similar number of training trials to reach criterion (60% correct), and there was no difference in the time it took to learn unrelated compared to related word pairs.

It’s worth noting that there was no difference between the two groups, or for the type of word pair, at the 30-minutes test either. In other words, your ability to remember something shortly after learning it is not a good guide for whether you have learned it ‘properly’, i.e., as an enduring memory.

The study tells us that the different types of information are differentially affected by wakefulness, that is, perhaps, they are more easily interfered with. This is encouraging, because semantically related information is far more common than unrelated information! But this may well serve as a reminder that integrating new material — making sure it is well understood and embedded into your existing database — is vital for effective learning.

The findings also confirm earlier evidence that running through any information (or skills) you want to learn just before going to bed is a good idea — and this is especially true if you are trying to learn information that is more arbitrary or less well understood (i.e., the sort of information for which you are likely to use mnemonic strategies, or, horror of horrors, rote repetition).

Reference: 

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

tags strategies: 

Menopause ‘brain fog’ a product of poor sleep and depression?

May, 2012

A smallish study of women approaching and in menopause found that some experienced poorer working memory and attention, and these were more likely to have poorer sleep, depression, and anxiety.

A study involving 75 perimenopausal women aged 40 to 60 has found that those with memory complaints tended to show impairments in working memory and attention. Complaints were not, however, associated with verbal learning or memory.

Complaints were also associated with depression, anxiety, somatic complaints, and sleep disturbance. But they weren’t linked to hormone levels (although estrogen is an important hormone for learning and memory).

What this suggests to me is that a primary cause of these cognitive impairments may be poor sleep, and anxiety/depression. A few years ago, I reported on a study that found that, although women’s reports of how many hot flashes they had didn’t correlate with memory impairment, an objective measure of the number of flashes they experienced during sleep did. Sleep, as I know from personal experience, is of sufficient importance that my rule-of-thumb is: don’t bother looking for any other causes of attention and memory deficits until you have sorted out your sleep!

Having said that, depressive symptoms showed greater relationship to memory complaints than sleep disturbance.

It’s no big surprise to hear that it is working memory in particular that is affected, because what many women at this time of life complain of is ‘brain fog’ — the feeling that your brain is full of cotton-wool. This doesn’t mean that you can’t learn new information, or remember old information. But it does mean that these tasks will be impeded to the extent that you need to hold on to too many bits of information. So mental arithmetic might be more difficult, or understanding complex sentences, or coping with unexpected disruptions to your routine, or concentrating on a task for a long time.

These sorts of problems are typical of those produced by on-going sleep deprivation, stress, and depression.

One caveat to the findings is that the study participants tended to be of above-average intelligence and education. This would protect them to a certain extent from cognitive decline — those with less cognitive reserve might display wider impairment. Other studies have found verbal memory, and processing speed, impaired during menopause.

Note, too, that a long-running, large population study has found no evidence for a decline in working memory, or processing speed, in women as they pass through perimenopause and menopause.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags lifestyle: 

tags memworks: 

tags problems: 

How marijuana impairs working memory

April, 2012

A mouse study indicates that the psychoactive component of marijuana, TCP, impairs working memory by initiating a process that ends with neural connections being weakened.

A new study explains how marijuana impairs working memory. The component THC removes AMPA receptors for the neurotransmitter glutamate in the hippocampus. This means that there are fewer receivers for the information crossing between neurons.

The research is also significant because it adds to the growing evidence for the role of astrocytes in neural transmission of information.

This is shown by the finding that genetically-engineered mice who lack type-1 cannabinoid receptors in their astroglia do not show impaired working memory when exposed to THC, while those who instead lacked the receptors in their neurons do. The activation of the cannabinoid receptor expressed by astroglia sends a signal to the neurons to begin the process that removes AMPA receptors, leading to long-term depression (a type of synaptic plasticity that weakens, rather than strengthens, neural connections).

See the Guardian and Scientific American articles for more detail on the study and the processes involved.

For more on the effects of marijuana on memory

Reference: 

Source: 

Topics: 

tags: 

tags lifestyle: 

tags memworks: 

Gestures improve language learning

February, 2012

Those learning a new language benefit from making suitable gestures as they repeat new vocabulary, and this can even extend to gestures arbitrarily linked to abstract adverbs.

I always like gesture studies. I think I’m probably right in saying that they started with language learning. Way back in 1980 it was shown that acting out action phrases meant they were remembered better than if the phrases had been only heard or read (the “enactment effect”). Enacted items, it turned out, “popped out” effortlessly in free recall tests — in other words, enactment had made the phrases highly accessible. Subsequent research found that this effect occurred both for both older and younger adults, and in immediate and delayed recall tests — suggesting not only that such items are more accessible but that forgetting is slower.

Following these demonstrations, there have been a few studies that have specifically looked at the effect of gestures on learning foreign languages, which have confirmed the benefits of gestures. But there are various confounding factors that are hard to remove when using natural languages, which is why the present researchers have developed an artificial language (“Vimmi”) to use in their research. In their first study, as in most other studies, the words and phrases used related to actions. In a new study, the findings were extended to more abstract vocabulary.

In this study, 20 German-speakers participated in a six-day language class to study Vimmi. The training material included 32 sentences, each containing a subject, verb, adverb, and object. While the subject nouns were concrete agents (e.g., musician, director), the other words were all abstract. Here’s a couple of sample sentences (translated, obviously): (The) designer frequently shapes (the) style. (The) pilot really enjoys (the) view. The length of the words was controlled: nouns all had 3 syllables; verbs and adverbs all had two.

For 16 of the sentences, participants saw the word in Vimmi and heard it. The translation of the word appeared on the screen fractionally later, while at the same time a video appeared in which woman performed the gesture relating to the word. The audio of the word was replayed, and participants were cued to imitate the gesture as they repeated the word. For the other 16 sentences, a video with a still image of the actress appeared, and the participants were simply cued to repeat the word when the audio was replayed.

While many of the words used gestures similar to their meaning (such as a cutting gesture for the word “cut”), the researchers found that the use of any gesture made a difference as long as it was unique and connected to a specific word. For example, the abstract word “rather” does not have an obvious gesture that would go with it. However, a gesture attached to this word also worked.

Each daily session lasted three hours. From day 2, sessions began with a free recall and a cued recall test. In the free recall test, participants were asked to write as many items as possible in both German and Vimmi. Items had to be perfectly correct to be counted. From day 4, participants were also required to produce new sentences with the words they had learned.

Right from the beginning, free recall of items which had been enacted was superior to those which hadn’t been — in German. However, in Vimmi, significant benefits from enactment occurred only from day 3. The main problem here was not forgetting the items, but correctly spelling them. In the cued recall test (translating from Vimmi to German, or German to Vimmi), again, the superiority of the enactment condition only showed up from day 3.

Perhaps the most interesting result came from the written production test. Here, people reproduced the same number of sentences they had learned on each of the three days of the test, and although enacted words were remembered at a higher rate, that rate didn’t alter, and didn’t reach significance. However, the production of new sentences improved each day, and the benefits of enactment increased each day. These benefits were significant from day 5.

The main question, however, was whether the benefits of enactment depended on word category. As expected, concrete nouns were remembered than verbs, followed by abstract nouns, and finally adverbs. When all the tests were lumped together, there was a significant benefit of enactment for all types of word. However, the situation became a little more nuanced when the data was separately analyzed.

In free recall, for Vimmi, enactment was only of significant benefit for concrete nouns and verbs. In cued recall, for translating German into Vimmi, the enactment benefit was significant for all except concrete nouns (I’m guessing concrete nouns have enough ‘natural’ power not to need gestures in this situation). For translating Vimmi into German, the benefit was only significant for verbs and abstract nouns. In new sentence production, interestingly, participants used significantly more items of all four categories if they had been enacted. This is perhaps the best evidence that enactment makes items more accessible in memory.

What all this suggests is that acting out new words helps you learn them, but some types of words may benefit more from this strategy than others. But I think we need more research before being sure about such subtleties. The pattern of results make it clear that we really need longer training, and longer delays, to get a better picture of the most effective way to use this strategy.

For example, it may be that adverbs, although they showed the most inconsistent benefits, are potentially the category that stands to gain the most from this strategy — because they are the hardest type of word to remember. Because any embodiment of such an abstract adverb must be arbitrary — symbolic rather than representational — it naturally is going to be harder to learn (yes, some adverbs could be represented, but the ones used in this study, and the ones I am talking about, are of the “rather”, “really”, “otherwise” ilk). But if you persist in learning the association between concept and gesture, you may derive greater benefit from enactment than you would from easier words, which need less help.

Here’s a practical discussion of all this from a language teacher’s perspective.

Reference: 

[2688] Macedonia, M., & Knösche T. R.
(2011).  Body in Mind: How Gestures Empower Foreign Language Learning.
Mind, Brain, and Education. 5(4), 196 - 211.

Source: 

Topics: 

tags memworks: 

tags strategies: 

Music training protects against aging-related hearing loss

February, 2012

More evidence that music training protects older adults from age-related impairment in understanding speech, adding to the potential benefits of music training in preventing dementia.

I’ve spoken before about the association between hearing loss in old age and dementia risk. Although we don’t currently understand that association, it may be that preventing hearing loss also helps prevent cognitive decline and dementia. I have previously reported on how music training in childhood can help older adults’ ability to hear speech in a noisy environment. A new study adds to this evidence.

The study looked at a specific aspect of understanding speech: auditory brainstem timing. Aging disrupts this timing, degrading the ability to precisely encode sound.

In this study, automatic brain responses to speech sounds were measured in 87 younger and older normal-hearing adults as they watched a captioned video. It was found that older adults who had begun musical training before age 9 and engaged consistently in musical activities through their lives (“musicians”) not only significantly outperformed older adults who had no more than three years of musical training (“non-musicians”), but encoded the sounds as quickly and accurately as the younger non-musicians.

The researchers qualify this finding by saying that it shows only that musical experience selectively affects the timing of sound elements that are important in distinguishing one consonant from another, not necessarily all sound elements. However, it seems probable that it extends more widely, and in any case the ability to understand speech is crucial to social interaction, which may well underlie at least part of the association between hearing loss and dementia.

The burning question for many will be whether the benefits of music training can be accrued later in life. We will have to wait for more research to answer that, but, as music training and enjoyment fit the definition of ‘mentally stimulating activities’, this certainly adds another reason to pursue such a course.

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

tags strategies: 

The problem in correcting false knowledge

February, 2012

Whether corrections to students’ misconceptions ‘stick’ depends on the strength of the memory of the correction.

Students come into classrooms filled with inaccurate knowledge they are confident is correct, and overcoming these misconceptions is notoriously difficult. In recent years, research has shown that such false knowledge can be corrected with feedback. The hypercorrection effect, as it has been termed, expresses the finding that when students are more confident of a wrong answer, they are more likely to remember the right answer if corrected.

This is somewhat against intuition and experience, which would suggest that it is harder to correct more confidently held misconceptions.

A new study tells us how to reconcile experimental evidence and belief: false knowledge is more likely to be corrected in the short-term, but also more likely to return once the correction is forgotten.

In the study, 50 undergraduate students were tested on basic science facts. After rating their confidence in each answer, they were told the correct answer. Half the students were then retested almost immediately (after a 6 minute filler task), while the other half were retested a week later.

There were 120 questions in the test. Examples include: What is stored in a camel's hump? How many chromosomes do humans have? What is the driest area on Earth? The average percentage of correct responses on the initial test was 38%, and as expected, for the second test, performance was significantly better on the immediate compared to the delayed (90% vs 71%).

Students who were retested immediately gave the correct answer on 86% of their previous errors, and they were more likely to correct their high-confidence errors than those made with little confidence (the hypercorrection effect). Those retested a week later also showed the hypercorrection effect, albeit at a much lower level: they only corrected 56% of their previous errors. (More precisely, on the immediate test, corrected answers rose from 79% for the lowest confidence level to 92% for the highest confidence. On the delayed test, corrected answers rose from 43% to 70% on the second highest confidence level, 64% for the highest.)

In those instances where students had forgotten the correct answer, they were much more likely to reproduce the original error if their confidence had been high. Indeed, on the immediate test, the same error was rarely repeated, regardless of confidence level (the proportion of repeated errors hovered at 3-4% pretty much across the board). On the delayed test, on the other hand, there was a linear increase, with repeated errors steadily increasing from 14% to 23% as confidence level rose (with the same odd exception — at the second highest confidence level, proportion of repeated errors suddenly fell).

Overall, students were more likely to correct their errors if they remembered their error than if they didn’t (72% vs 65%). Unsurprisingly, those in the immediate group were much more likely to remember their initial errors than those in the delayed group (85% vs 61%).

In other words, it’s all about relative strength of the memories. While high-confidence errors are more likely to be corrected if the correct answer is readily accessible, they are also more likely to be repeated once the correct answer becomes less accessible. The trick to replacing false knowledge, then, is to improve the strength of the correct information.

Thus, as recency fades, you need to engage frequency to make the new memory stronger. So the finding points to the special need for multiple repetition, if you are hoping to correct entrenched false knowledge. The success of immediate testing indicates that properly spaced retrieval practice is probably the best way of replacing incorrect knowledge.

Of course, these findings apply well beyond the classroom!

Reference: 

[2725] Butler, A. C., Fazio L. K., & Marsh E. J.
(2011).  The hypercorrection effect persists over a week, but high-confidence errors return.
Psychonomic Bulletin & Review. 18(6), 1238 - 1244.

Source: 

Topics: 

tags memworks: 

tags strategies: 

tags study: 

Pages

Subscribe to RSS - encoding
Error | About memory

Error

The website encountered an unexpected error. Please try again later.