encoding

Encoding

See also

Consolidation

Older news items (pre-2010) brought over from the old website

More light shed on distinction between long and short-term memory

The once clear-cut distinction between long- and short-term memory has increasingly come under fire in recent years. A new study involving patients with a specific form of epilepsy called 'temporal lobe epilepsy with bilateral hippocampal sclerosis' has now clarified the distinction. The patients, who all had severely compromised hippocampi, were asked to try and memorize photographic images depicting normal scenes. Their memory was tested and brain activity recorded after five seconds or 60 minutes. As expected, the patients could not remember the images after 60 minutes, but could distinguish seen-before images from new at five seconds. However, their memory was poor when asked to recall details about the images. Brain activity showed that short-term memory for details required the coordinated activity of a network of visual and temporal brain areas, whereas standard short-term memory drew on a different network, involving frontal and parietal regions, and independent of the hippocampus.

Cashdollar, N., Malecki, U., Rugg-Gunn, F. J., Duncan, J. S., Lavie, N., & Duzel, E. (2009). Hippocampus-dependent and -independent theta-networks of active maintenance. Proceedings of the National Academy of Sciences, 106(48), 20493-20498. doi: 10.1073/pnas.0904823106.

http://www.eurekalert.org/pub_releases/2009-11/ucl-tal110909.php

Why smells can be so memorable

Confirming the common experience of the strength with which certain smells can evoke emotions or memories, an imaging study has found that, when people were presented with a visual object together with one, and later with a second, set of pleasant and unpleasant odors and sounds, then presented with the same objects a week later, there was unique activation in particular brain regions in the case of their first olfactory (but not auditory) associations. This unique signature existed in the hippocampus regardless of how strong the memory was — that is, it was specific to olfactory associations. Regardless of whether they were smelled or heard, people remembered early associations more clearly when they were unpleasant.

The study appeared online on November 5 in Current Biology.

http://www.physorg.com/news176649240.html

Two studies help explain the spacing effect

I talked about the spacing effect in my last newsletter. Now it seems we can point to the neurology that produces it. Not only that, but the study has found a way of modifying it, to improve learning. It’s a protein called SHP-2 phosphatase that controls the spacing effect by determining how long resting intervals between learning sessions need to last so that long-lasting memories can form. The discovery happened because more than 50% of those with a learning disorder called Noonan's disease have mutations in a gene called PTP11, which encodes the SHP-2 phosphatase protein. These mutations boost the activity levels of SHP-2 phosphatase, which, in genetically modified fruit flies, disturbs the spacing effect by increasing the interval before a new chemical signal can occur (it is the repeated formation and decay of these signals that produces memory). Accordingly, those with the mutation need longer periods between repetitions to establish long-term memory.

Pagani, M.R. et al. 2009. Spacing Effect: SHP-2 Phosphatase Regulates Resting Intervals Between Learning Trials in Long-Term Memory Induction. Cell, 139 (1), 186-198.

http://www.eurekalert.org/pub_releases/2009-10/cshl-csi092809.php

A study involving Aplysia (often used as a model for learning because of its simplicity and the large size of its neural connections) reveals that spaced and massed training lead to different types of memory formation. The changes at the synapses that underlie learning are controlled by the release of the neurotransmitter serotonin. Four to five spaced applications of serotonin generated long-term changes in the strength of the synapse and less activation of the enzyme Protein kinase C Apl II, leading to stronger connections between neurons. However, when the application of serotonin was continuous (as in massed learning), there was much more activation of PKC Apl II, suggesting that activation of this enzyme may block the mechanisms for generating long-term memory, while retaining mechanisms for short-term memory.

Villareal, G., Li, Q., Cai, D., Fink, A. E., Lim, T., Bougie, J. K., et al. (2009). Role of Protein Kinase C in the Induction and Maintenance of Serotonin-Dependent Enhancement of the Glutamate Response in Isolated Siphon Motor Neurons of Aplysia californica. J. Neurosci., 29(16), 5100-5107.

http://www.eurekalert.org/pub_releases/2009-10/mu-wow100109.php

Smart gene helps brain cells communicate

For the second time, scientists have created a smarter rat by making their brains over-express CaMKII, a protein that acts as a promoter and signaling molecule for the NR2B subunit of the NMDA receptor. Over-expressing the gene lets brain cells communicate a fraction of a second longer. The research indicates that it plays a crucial role in initiating long-term potentiation. The NR2B subunit is more common in juvenile brains; after puberty the NR2A becomes more common. This is one reason why young people tend to learn and remember better — because the NR2B keeps communication between brain cells open maybe just a hundred milliseconds longer than the NR2A. Although this genetic modification is not something that could probably be replicated in humans, it does validate NR2B as a drug target for improving memory in healthy individuals as well as those struggling with Alzheimer's or mild dementia.

Wang, D., Cui, Z., Zeng, Q., Kuang, H., Wang, L. P., Tsien, J. Z., et al. (2009). Genetic Enhancement of Memory and Long-Term Potentiation but Not CA1 Long-Term Depression in NR2B Transgenic Rats. PLoS ONE, 4(10), e7486.
Full text at http://dx.plos.org/10.1371/journal.pone.0007486

http://www.eurekalert.org/pub_releases/2009-10/mcog-sr101909.php

Concepts are born in the hippocampus

Concepts are at the heart of cognition. A study showed 25 people pairs of fractal patterns that represented the night sky and asked them to forecast the weather – either rain or sun – based on the patterns. The task could be achieved by either working out the conceptual principles, or simply memorizing which patterns produced which effects. However, the next task required them to make predictions using new patterns (but based on the same principles). Success on this task was predictable from the degree of activity in the hippocampus during the first, learning, phase. In the second phase, the ventromedial prefrontal cortex, important in decision-making, was active. The results indicate that concepts are learned and stored in the hippocampus, and then passed on to the vMPFC for application.

Kumaran, D. et al. 2009. Tracking the Emergence of Conceptual Knowledge during Human Decision Making. Neuron, 63 (6), 889-901.

http://www.newscientist.com/article/dn17862-concepts-are-born-in-the-hippocampus.html
http://www.physorg.com/news172930530.html
http://www.eurekalert.org/pub_releases/2009-09/cp-hwk091709.php

Why we learn more from our successes than our failures

A monkey study shows for the first time how single cells in the prefrontal cortex and basal ganglia change their responses as a result of information about what is the right action and what is the wrong one. Importantly, when a behavior was successful, cells became more finely tuned to what the animal was learning — but after a failure, there was little or no change in the brain, and no improvement in behavior. The finding points to the importance of successful actions in learning new associations.

Histed, M.H., Pasupathy, A. & Miller, E.K. 2009. Learning Substrates in the Primate Prefrontal Cortex and Striatum: Sustained Activity Related to Successful Actions. Neuron, 63 (2), 244-253.

http://www.eurekalert.org/pub_releases/2009-07/miot-wwl072809.php

New insight into how information is encoded in the hippocampus

Theta brain waves are known to orchestrate neuronal activity in the hippocampus, and for a long time it’s been thought that these oscillations were "in sync" across the hippocampus, timing the firing of neurons like a sort of central pacemaker. A new rat study reveals that rather than being in sync, theta oscillations actually sweep along the length of the hippocampus as traveling waves. This changes our notion of how spatial information is represented in the rat brain (and presumably has implications for our brains: theta waves are ubiquitous in mammalian brains). Rather than neurons encoding points in space, it seems that what is encoded are segments of space. This would make it easier to distinguish between representations of locations from different times. It also may have significant implications for understanding how information is transmitted from the hippocampus to other areas of the brain, since different areas of the hippocampus are connected to different areas in the brain. The fact that hippocampal activity forms a traveling wave means that these target areas receive inputs from the hippocampus in a specific sequence rather than all at once.

Lubenov, E.V. & Siapas, A.G. 2009. Hippocampal theta oscillations are travelling waves. Nature, 459, 534-539.

http://www.eurekalert.org/pub_releases/2009-05/ciot-csr052909.php

How the brain translates memory into action

We know that the hippocampus is crucial for place learning, especially for the rapid learning of temporary events (such as where we’ve parked the car). Now a new study reveals more about how that coding for specific places connects to behaviour. Selective lesioning in rats revealed that the critical part is in the middle part of the hippocampus, where links to visuospatial information connect links to the behavioural control necessary for returning to that place after a period of time. Rats whose brain still maintained an accurate memory of place nevertheless failed to find their way when a sufficient proportion of the intermediate hippocampus was removed. The findings emphasise that memory failures are not only, or always, about actual deficits in memory, but can also be about being able to act on it.

Bast, T. et al. 2009. From Rapid Place Learning to Behavioral Performance: A Key Role for the Intermediate Hippocampus. PLoS Biology, 7(4), e1000089.

http://www.physorg.com/news159116757.html
http://www.eurekalert.org/pub_releases/2009-04/plos-nwd041709.php

How what we like defines what we know

How we categorize items is crucial to both how we perceive them and how well we remember them. Expertise in a subject is a well-established factor in categorization — experts create more specific categories. Because experts usually enjoy their areas of expertise, and because time spent on a subject should result in finer categorization, we would expect positive feelings towards an item to result in more specific categories. However, research has found that positive feelings usually result in more global processing. A new study has found that preference does indeed result in finer categorization and, more surprisingly, that this is independent of expertise. It seems that preference itself activates focused thinking that directly targets the preferred object, enabling more detailed perception and finer categorization.

Smallman, R. & Roese, N.J. 2008. Preference Invites Categorization. Psychological Science, 19 (12).

http://www.physorg.com/news152203095.html

Encoding isn’t solely in the hippocampus

Perhaps we can improve memory in older adults with a simple memory trick. The hippocampus is a vital region for learning and memory, and indeed the association of related details to form a complete memory has been thought to occur entirely within this region. However, a new imaging study has found that when volunteers memorized pairs of words such as "motor/bear" as new compound words ("motorbear") rather than separate words, then the perirhinal cortex, rather than the hippocampus, was activated, and this activity predicted whether the volunteers would be able to successfully remember the pairs in the future.

Haskins, A.L. et al. 2008. Perirhinal Cortex Supports Encoding and Familiarity-Based Recognition of Novel Associations. Neuron, 59, 554-560.

http://www.sciencedaily.com/releases/2008/08/080828220519.htm
http://www.eurekalert.org/pub_releases/2008-08/uoc--mts082808.php

Computer model reveals how brain represents meaning

A new computational model has been developed that can predict with 77% accuracy which areas of the brain are activated when a person thinks about a specific concrete noun.  The success of the model points to a new understanding of how our brains represent meaning. The model was constructed on the basis of the frequency with which a noun co-occurs in text (from a trillion-word text corpus) with each of 25 verbs associated with sensory-motor functions, including see, hear, listen, taste, smell, eat, push, drive and lift. These 25 verbs appear to be basic building blocks the brain uses for representing meaning. The effect of each co-occurrence on the activation of each tiny voxel in an fMRI brain scan was established, and from this data, activation patterns were drawn.

Mitchell, T.M. et al. 2008. Predicting Human Brain Activity Associated with the Meanings of Nouns. Science, 320 (5880), 1191-1195.

http://www.physorg.com/news131290235.html
http://www.eurekalert.org/pub_releases/2008-05/cmu-cmc052308.php

Novel mechanism for long-term learning identified

There has always been a paradox at the heart of learning: repetition is vital, yet at the level of individual synapses, repetitive stimulation might actually reverse early gains in synaptic strength. Now the mechanism that resolves this apparent paradox has been uncovered. N-methyl-D-aspartate (NMDA) receptors appear from studies to be required for the synaptic strengthening that occurs during learning, but these receptors undergo a sort of Jekyll-and-Hyde transition after the initial phase of learning. Instead of helping synapses get stronger, they actually begin to weaken the synapses and impair further learning. The new study reveals that while the NMDA receptor is required to begin neural strengthening, a second neurotransmitter receptor — the metabotropic glutamate (mGlu) receptor — then comes into play. Using an NMDA antagonist to block NMDA receptors after the initiation of plasticity resulted in enhanced synaptic strengthening, while blocking mGlu receptors caused strengthening to stop.

Clem, R.L., Celikel, T. & Barth, A.L. 2008. Ongoing in Vivo Experience Triggers Synaptic Metaplasticity in the Neocortex. Science, 319 (5859), 101-104.

http://www.eurekalert.org/pub_releases/2008-01/cmu-nmf010308.php

Brain protein that's a personal trainer for your memory

A brain protein called kalirin has been shown to be critical for helping you learn and remember what you learned. When you learn something new, kalirin makes the synaptic spines on your neurons grow bigger and stronger the more you repeat the lesson. This may help explain why continued intellectual activity and learning delays cognitive decline as people grow older. "It's important to keep learning so your synapses stay healthy." Previous studies have found that kalirin levels are reduced in brains of people with diseases like Alzheimer's and schizophrenia. This latest finding suggests it may be a useful target for future drug therapy for these diseases.

Xie, Z. et al . 2007. Kalirin-7 Controls Activity-Dependent Structural and Functional Plasticity of Dendritic Spines. Neuron, 56, 640-656.

http://www.eurekalert.org/pub_releases/2007-11/nu-wyr112107.php
http://www.eurekalert.org/pub_releases/2007-11/cp-md111407.php

Why learning takes a while

New findings about how new connections are made between brain cells sheds light on why it sometimes takes a little while before we truly ‘get’ something. It seems that, although connections are made within minutes, it takes eight hours before these connections are mature enough to transmit information, and more hours before the connections are firmly enough established to become fully functional synapses, likely to survive. It was also found that when a new spine made contact with a site already hosting a contact, the new spine was highly likely to displace the old connection. This may mean that newly learned information might lead to a fading of older information.

Nägerl, U.V., Köstinger, G., Anderson, J.C., Martin, A.C. & Bonhoeffer, T. 2007. Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons. The Journal of Neuroscience, 27, 8149-8156.

http://www.physorg.com/news106837506.html

How memory networks are formed

We know that memories are encoded in a network of neurons, but how do the neurons “decide” which ones to connect to? A mouse study reveals that the level of a protein called CREB is critical in this decision. The findings suggest a competitivemodel in which eligible neurons are selected to participate in a memory trace as a function of their relative CREB activity at the time of learning.

Han, J-H et al. 2007. Neuronal Competition and Selection During Memory Formation. Science, 316 (5823), 457-460.

http://www.physorg.com/news96213299.html
http://www.eurekalert.org/pub_releases/2007-04/uoc--uru041707.php

Support for labeling as an aid to memory

A study involving an amnesia-inducing drug has shed light on how we form new memories. Participants in the study participants viewed words, photographs of faces and landscapes, and abstract pictures one at a time on a computer screen. Twenty minutes later, they were shown the words and images again, one at a time. Half of the images they had seen earlier, and half were new. They were then asked whether they recognized each one. For one session they were given midazolam, a drug used to relieve anxiety during surgical procedures that also causes short-term anterograde amnesia, and for one session they were given a placebo.
It was found that the participants' memory while in the placebo condition was best for words, but the worst for abstract images. Midazolam impaired the recognition of words the most, impaired memory for the photos less, and impaired recognition of abstract pictures hardly at all. The finding reinforces the idea that the ability to recollect depends on the ability to link the stimulus to a context, and that unitization increases the chances of this linking occurring. While the words were very concrete and therefore easy to link to the experimental context, the photographs were of unknown people and unknown places and thus hard to distinctively label. The abstract images were also unfamiliar and not unitized into something that could be described with a single word.

Reder, L.M. et al. 2006. Drug-Induced Amnesia Hurts Recognition, but Only for Memories That Can Be Unitized. Psychological Science, 17(7), 562-

http://www.sciencedaily.com/releases/2006/07/060719092800.htm

Why motivation helps memory

An imaging study has identified the brain region involved in anticipating rewards — specific brain structures in the mesolimbic region involved in the processing of emotions — and revealed how this reward center promotes memory formation. Cues to high-reward scenes that were later remembered activated the reward areas of the mesolimbic region as well as the hippocampus. Anticipatory activation also suggests that the brain actually prepares in advance to filter incoming information rather than simply reacting to the world.

Adcock, R.A., Thangavel, A., Knutson, B., Whitfield-Gabrieli, S. & Gabrieli, J.D.E. 2006. Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation. Neuron, 50, 507–517.

http://www.eurekalert.org/pub_releases/2006-05/cp-tbm042706.htm

New view of hippocampus’s role in memory

Amnesiacs have overturned the established view of the hippocampus, and of the difference between long-and short-term memories. It appears the hippocampus is just as important for retrieving certain types of short-term memories as it is for long-term memories. The critical thing is not the age of the memory, but the requirement to form connections between pieces of information to create a coherent episode. The researchers suggest that, for the brain, the distinction between 'long-term' memory and 'short-term' memory are less relevant than that between ‘feature’ memory and ‘conjunction’ memory — the ability to remember specific things versus how they are related. The hippocampus may be thought of as the brain's switchboard, piecing individual bits of information together in context.

Olson, I.R., Page, K., Moore, K.S., Chatterjee, A. & Verfaellie, M. 2006. Working Memory for Conjunctions Relies on the Medial Temporal Lobe. Journal of Neuroscience, 26, 4596 – 4601.

http://www.eurekalert.org/pub_releases/2006-05/uop-aso053106.php

Priming the brain for learning

A new study has revealed that how successfully you form memories depends on your frame of mind beforehand. If your brain is primed to receive information, you will have less trouble recalling it later. Moreover, researchers could predict how likely the participant was to remember a word by observing brain activity immediately prior to presentation of the word.

Otten, L.J., Quayle, A.H., Akram, S., Ditewig, T.A. &Rugg, M.D. 2006. Brain activity before an event predicts later recollection. Nature, published online ahead of print 26February2006

http://www.nature.com/news/2006/060220/full/060220-19.html
http://www.eurekalert.org/pub_releases/2006-02/uoc--uri022806.php
http://www.eurekalert.org/pub_releases/2006-02/ucl-ywr022206.php

A single memory is processed in three separate parts of the brain

A rat study has demonstrated that a single experience is indeed processed differently in separate parts of the brain. They found that when the rats were confined in a dark compartment of a familiar box and given a mild shock, the hippocampus was involved in processing memory for context, while the anterior cingulate cortex was responsible for retaining memories involving unpleasant stimuli, and the amygdala consolidated memories more broadly and influenced the storage of both contextual and unpleasant information.

Malin, E.L. & McGaugh, J.L. 2006. Differential involvement of the hippocampus, anterior cingulate cortex, and basolateral amygdala in memory for context and footshock. Proceedings of the National Academy of Sciences, 103 (6), 1959-1963.

http://www.eurekalert.org/pub_releases/2006-02/uoc--urp020106.php

Resting after new learning may not be laziness

In an intriguing rat study, researchers recorded brain activity while rats ran up and down a straight 1.5-metre run. As the rats ran along the track, the nerve cells fired in a very specific sequence. But to the researchers’ surprise, when the rats were resting, the same brain cells replayed the sequence of electrical firing over and over, but in reverse and speeded up. This is similar to the replay that occurs during sleep and consolidates spatial memory, but the reverse aspect has not been seen before, and is presumed to have something to do with reinforcing the sequence. The researchers suggest this may have general implications.

Foster, D.J. & Wilson, M.A. 2006. Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature, advance online publication; published online 12 February 2006

http://www.nature.com/news/2006/060206/full/060206-13.html

Protein that controls how neurons change as a result of experience

Two different research teams have identified a master protein that sheds light on one of neurobiology's biggest mysteries-how neurons change as a result of individual experiences. The protein, myocyte enhancer factor 2 (MEF2), turns on and off genes that control dendritic remodeling, that is the growth and pruning of neurons. In addition, one of the teams has identified how MEF2 switches from one program to the other, that is, from dendrite-promoting to dendrite-pruning, and the researchers have identified some of MEF2's targets. It’s suggested the MEF2 pathway could play a role in autism and other neurodevelopmental diseases, and this discovery could lead to new therapies for a host of diseases in which synapses either fail to form or run rampant.

Flavell, S.W. et al. 2006. Activity-Dependent Regulation of MEF2 Transcription Factors Suppresses Excitatory Synapse Number. Science, 311(5763), 1008-1012. Shalizi, A. et al. 2006. A Calcium-Regulated MEF2 Sumoylation Switch Controls Postsynaptic Differentiation. Science, 311(5763), 1012-1017.

http://www.eurekalert.org/pub_releases/2006-02/hms-rfm022106.php

Concrete evidence of the 'memory code'

I’m always talking about the “memory code”, and its existence is central to theories of memory, but now, for the first time, researchers have found concrete evidence of it. The coding system was discovered during an investigation into how the primary auditory cortex responds to different sounds. Rats were trained with various tones; it was found that the more important the tone, the greater the area of auditory cortex that became tuned to it — in other words, more neurons were involved in storing the information.

Rutkowski, R.G. & Weinberger, N.M. 2005. Encoding of learned importance of sound by magnitude of representational area in primary auditory cortex. Proceedings of the National Academy of Sciences, 102 (38), 13664-13669.

http://www.eurekalert.org/pub_releases/2005-09/uoc--unu090805.php

Seeing the formation of a memory

An optical imaging technique has enabled researchers to visualize changes in nerve connections. The study used genetically modified fruit flies, whose neuronal connections become fluorescent during synaptic transmission. The flies were conditioned to associate a brief puff of an odor with a shock. Using a high-powered microscope to watch the fluorescent signals in flies' brains as they learned, the researchers discovered that a specific set of neurons (projection neurons), had a greater number of active connections with other neurons after the conditioning experiment. These newly active connections appeared within 3 minutes after the experiment, suggesting that the synapses which became active after the learning took place were already formed but remained "silent" until they were needed to represent the new memory. The new synaptic activity disappeared by 7 minutes after the experiment, but the flies continued to avoid the odor they associated with the shock. The study suggests that the earliest representation of a new memory occurs by rapid changes – "like flipping a switch" – in the number of neuronal connections that respond to the odor, rather than by formation of new connections or by an increase in the number of neurons that represent an odor. The fact that the flies continued to show a learned response even after the new synaptic activity waned suggests that other memory traces found at higher levels in the brain took over to encode the memory for a longer period of time.

Yu, D., Ponomarev, A. & Davis, R.L. 2004. Altered representation of the spatial code for odors after olfactory classical conditioning: memory trace formation by synaptic recruitment. Neuron, 42 (3), 437–449.

http://www.eurekalert.org/pub_releases/2004-05/nion-sar051004.php

More light shed on memory encoding

Anything we perceive contains a huge amount of sensory information. How do we decide what bits to process? New research has identified brain cells that streamline and simplify sensory information, markedly reducing the brain's workload. The study found that when monkeys were taught to remember clip art pictures, their brains reduced the level of detail by sorting the pictures into categories for recall, such as images that contained "people," "buildings," "flowers," and "animals." The categorizing cells were found in the hippocampus. As humans do, different monkeys categorized items in different ways, selecting different aspects of the same stimulus image, most likely reflecting different histories, strategies, and expectations residing within individual hippocampal networks.

Hampson, R.E., Pons, T.P., Stanford, T.R. & Deadwyler, S.A. 2004. Categorization in the monkey hippocampus: A possible mechanism for encoding information into memory. PNAS, 101, 3184-3189.

http://www.eurekalert.org/pub_releases/2004-02/wfub-nfo022604.php

tags memworks: 

How your brain chunks ‘moments’ into ‘events’

We talk about memory for ‘events’, but how does the brain decide what an event is? How does it decide what is part of an event and what isn’t? A new study suggests that our brain uses categories it creates based on temporal relationships between people, objects, and actions — i.e., items that tend to—or tend not to—pop up near one another at specific times.

05/2013

Reactivate if you want to remember

We know sleep helps consolidate memories. Now a new study sheds light on how your sleeping brain decides what’s worth keeping. The study found that when the information that makes up a memory has a high value—associated with, for example, making more money—the memory is more likely to be rehearsed and consolidated during sleep.

05/2013
tags memworks: 
tags lifestyle: 

It’s not the noise in the brain; it’s the noise in the input

A new study has found that errors in perceptual decisions occurred only when there was confused sensory input, not because of any ‘noise’ or randomness in the cognitive processing. The finding, if replicated across broader contexts, will change some of our fundamental assumptions about how the brain works.

05/2013

Cognitive decline in old age related to poorer sleep

February, 2013

A new study confirms the role slow-wave sleep plays in consolidating memories, and reveals that one reason for older adults’ memory problems may be the quality of their sleep.

Recent research has suggested that sleep problems might be a risk factor in developing Alzheimer’s, and in mild cognitive impairment. A new study adds to this gathering evidence by connecting reduced slow-wave sleep in older adults to brain atrophy and poorer learning.

The study involved 18 healthy young adults (mostly in their 20s) and 15 healthy older adults (mostly in their 70s). Participants learned 120 word- nonsense word pairs and were tested for recognition before going to bed. Their brain activity was recorded while they slept. Brain activity was also measured in the morning, when they were tested again on the word pairs.

As has been found previously, older adults showed markedly less slow-wave activity (both over the whole brain and specifically in the prefrontal cortex) than the younger adults. Again, as in previous studies, the biggest difference between young and older adults in terms of gray matter volume was found in the medial prefrontal cortex (mPFC). Moreover, significant differences were also found in the insula and posterior cingulate cortex. These regions, like the mPFC, have also been associated with the generation of slow waves.

When mPFC volume was taken into account, age no longer significantly predicted the extent of the decline in slow-wave activity — in other words, the decline in slow-wave activity appears to be due to the brain atrophy in the medial prefrontal cortex. Atrophy in other regions of the brain (precuneus, hippocampus, temporal lobe) was not associated with the decline in slow-wave activity when age was considered.

Older adults did significantly worse on the delayed recognition test than young adults. Performance on the immediate test did not predict performance on the delayed test. Moreover, the highest performers on the immediate test among the older adults performed at the same level as the lowest young adult performers — nevertheless, these older adults did worse the following day.

Slow-wave activity during sleep was significantly associated with performance on the next day’s test. Moreover, when slow-wave activity was taken into account, neither age nor mPFC atrophy significantly predicted test performance.

In other words, age relates to shrinkage of the prefrontal cortex, this shrinkage relates to a decline in slow-wave activity during sleep, and this decline in slow-wave sleep relates to poorer cognitive performance.

The findings confirm the importance of slow-wave brainwaves for memory consolidation.

All of this suggests that poorer sleep quality contributes significantly to age-related cognitive decline, and that efforts should be made to improve quality of sleep rather than just assuming lighter, more disturbed sleep is ‘natural’ in old age!

tags development: 
tags problems: 
tags memworks: 
Topics: 
tags lifestyle: 

Why learning gets harder as we get older

February, 2013

A mouse study shows that weakening unwanted or out-of-date connections is as important as making new connections, and that neurological changes as we age reduces our ability to weaken old connections.

A new study adds more support to the idea that the increasing difficulty in learning new information and skills that most of us experience as we age is not down to any difficulty in acquiring new information, but rests on the interference from all the old information.

Memory is about strengthening some connections and weakening others. A vital player in this process of synaptic plasticity is the NMDA receptor in the hippocampus. This glutamate receptor has two subunits (NR2A and NR2B), whose ratio changes as the brain develops. Children have higher ratios of NR2B, which lengthens the time neurons talk to each other, enabling them to make stronger connections, thus optimizing learning. After puberty, the ratio shifts, so there is more NR2A.

Of course, there are many other changes in the aging brain, so it’s been difficult to disentangle the effects of this changing ratio from other changes. This new study genetically modified mice to have more NR2A and less NR2B (reflecting the ratio typical of older humans), thus avoiding the other confounds.

To the researchers’ surprise, the mice were found to be still good at making strong connections (‘long-term potentiation’ - LTP), but instead had an impaired ability to weaken existing connections (‘long-term depression’ - LTD). This produces too much noise (bear in mind that each neuron averages 3,000 potential points of contact (i.e., synapses), and you will see the importance of turning down the noise!).

Interestingly, LTD responses were only abolished within a particular frequency range (3-5 Hz), and didn’t affect 1Hz-induced LTD (or 100Hz-induced LTP). Moreover, while the mice showed impaired long-term learning, their short-term memory was unaffected. The researchers suggest that these particular LTD responses are critical for ‘post-learning information sculpting’, which they suggest is a step (hitherto unknown) in the consolidation process. This step, they postulate, involves modifying the new information to fit in with existing networks of knowledge.

Previous work by these researchers has found that mice genetically modified to have an excess of NR2B became ‘super-learners’. Until now, the emphasis in learning and memory has always been on long-term potentiation, and the role (if any) of long-term depression has been much less clear. These results point to the importance of both these processes in sculpting learning and memory.

The findings also seem to fit in with the idea that a major cause of age-related cognitive decline is the failure to inhibit unwanted information, and confirm the importance of keeping your mind actively engaged and learning, because this ratio is also affected by experience.

tags problems: 
Topics: 
tags development: 

Meditation can produce enduring changes in emotional processing

December, 2012

A new study provides more evidence that meditation changes the brain, and different types of meditation produce different effects.

More evidence that even an 8-week meditation training program can have measurable effects on the brain comes from an imaging study. Moreover, the type of meditation makes a difference to how the brain changes.

The study involved 36 participants from three different 8-week courses: mindful meditation, compassion meditation, and health education (control group). The courses involved only two hours class time each week, with meditation students encouraged to meditate for an average 20 minutes a day outside class. There was a great deal of individual variability in the total amount of meditation done by the end of the course (210-1491 minutes for the mindful attention training course; 190-905 minutes for the compassion training course).

Participants’ brains were scanned three weeks before the courses began, and three weeks after the end. During each brain scan, the volunteers viewed 108 images of people in situations that were either emotionally positive, negative or neutral.

In the mindful attention group, the second brain scan showed a decrease in activation in the right amygdala in response to all images, supporting the idea that meditation can improve emotional stability and response to stress. In the compassion meditation group, right amygdala activity also decreased in response to positive or neutral images, but, among those who reported practicing compassion meditation most frequently, right amygdala activity tended to increase in response to negative images. No significant changes were seen in the control group or in the left amygdala of any participant.

The findings support the idea that meditation can be effective in improving emotional control, and that compassion meditation can indeed increase compassionate feelings. Increased amygdala activation was also correlated with decreased depression scores in the compassion meditation group, which suggests that having more compassion towards others may also be beneficial for oneself.

The findings also support the idea that the changes brought about by meditation endure beyond the meditative state, and that the changes can start to occur quite quickly.

These findings are all consistent with other recent research.

One point is worth emphasizing, in the light of the difficulty in developing a training program that improves working memory rather than simply improving the task being practiced. These findings suggest that, unlike most cognitive training programs, meditation training might produce learning that is process-specific rather than stimulus- or task-specific, giving it perhaps a wider generality than most cognitive training.

tags strategies: 
Topics: 

Dopamine decline underlies episodic memory decline in old age

December, 2012

Findings supporting dopamine’s role in long-term episodic memory point to a decline in dopamine levels as part of the reason for cognitive decline in old age, and perhaps in Alzheimer’s.

The neurotransmitter dopamine is found throughout the brain and has been implicated in a number of cognitive processes, including memory. It is well-known, of course, that Parkinson's disease is characterized by low levels of dopamine, and is treated by raising dopamine levels.

A new study of older adults has now demonstrated the effect of dopamine on episodic memory. In the study, participants (aged 65-75) were shown black and white photos of indoor scenes and landscapes. The subsequent recognition test presented them with these photos mixed in with new ones, and required them to note which photos they had seen before. Half of the participants were first given Levodopa (‘L-dopa’), and half a placebo.

Recognition tests were given two and six hours after being shown the photos. There was no difference between the groups at the two-hour test, but at the six-hour test, those given L-dopa recognized up to 20% more photos than controls.

The failure to find a difference at the two-hour test was expected, if dopamine’s role is to help strengthen the memory code for long-term storage, which occurs after 4-6 hours.

Individual differences indicated that the ratio between the amount of Levodopa taken and body weight is key for an optimally effective dose.

The findings therefore suggest that at least part of the reason for the decline in episodic memory typically seen in older adults is caused by declining levels of dopamine.

Given that episodic memory is one of the first and greatest types of memory hit by Alzheimer’s, this finding also has implications for Alzheimer’s treatment.

Caffeine improves recognition of positive words

Another recent study also demonstrates, rather more obliquely, the benefits of dopamine. In this study, 200 mg of caffeine (equivalent to 2-3 cups of coffee), taken 30 minutes earlier by healthy young adults, was found to improve recognition of positive words, but had no effect on the processing of emotionally neutral or negative words. Positive words are consistently processed faster and more accurately than negative and neutral words.

Because caffeine is linked to an increase in dopamine transmission (an indirect effect, stemming from caffeine’s inhibitory effect on adenosine receptors), the researchers suggest that this effect of caffeine on positive words demonstrates that the processing advantage enjoyed by positive words is driven by the involvement of the dopaminergic system.

tags: 
tags problems: 
Topics: 
tags development: 

Growing the brain with a new language

November, 2012

A new study adds to the growing evidence for the cognitive benefits of learning a new language, and hints at why some people might be better at this than others.

A small Swedish brain imaging study adds to the evidence for the cognitive benefits of learning a new language by investigating the brain changes in students undergoing a highly intensive language course.

The study involved an unusual group: conscripts in the Swedish Armed Forces Interpreter Academy. These young people, selected for their talent for languages, undergo an intensive course to allow them to learn a completely novel language (Egyptian Arabic, Russian or Dari) fluently within ten months. This requires them to acquire new vocabulary at a rate of 300-500 words every week.

Brain scans were taken of 14 right-handed volunteers from this group (6 women; 8 men), and 17 controls that were matched for age, years of education, intelligence, and emotional stability. The controls were medical and cognitive science students. The scans were taken before the start of the course/semester, and three months later.

The brain scans revealed that the language students showed significantly greater changes in several specific regions. These regions included three areas in the left hemisphere: the dorsal middle frontal gyrus, the inferior frontal gyrus, and the superior temporal gyrus. These regions all grew significantly. There was also some, more selective and smaller, growth in the middle frontal gyrus and inferior frontal gyrus in the right hemisphere. The hippocampus also grew significantly more for the interpreters compared to the controls, and this effect was greater in the right hippocampus.

Among the interpreters, language proficiency was related to increases in the right hippocampus and left superior temporal gyrus. Increases in the left middle frontal gyrus were related to teacher ratings of effort — those who put in the greatest effort (regardless of result) showed the greatest increase in this area.

In other words, both learning, and the effort put into learning, had different effects on brain development.

The main point, however, is that language learning in particular is having this effect. Bear in mind that the medical and cognitive science students are also presumably putting in similar levels of effort into their studies, and yet no such significant brain growth was observed.

Of course, there is no denying that the level of intensity with which the interpreters are acquiring a new language is extremely unusual, and it cannot be ruled out that it is this intensity, rather than the particular subject matter, that is crucial for this brain growth.

Neither can it be ruled out that the differences between the groups are rooted in the individuals selected for the interpreter group. The young people chosen for the intensive training at the interpreter academy were chosen on the basis of their talent for languages. Although brain scans showed no differences between the groups at baseline, we cannot rule out the possibility that such intensive training only benefited them because they possessed this potential for growth.

A final caveat is that the soldiers all underwent basic military training before beginning the course — three months of intense physical exercise. Physical exercise is, of course, usually very beneficial for the brain.

Nevertheless, we must give due weight to the fact that the brain scans of the two groups were comparable at baseline, and the changes discussed occurred specifically during this three-month learning period. Moreover, there is growing evidence that learning a new language is indeed ‘special’, if only because it involves such a complex network of processes and brain regions.

Given that people vary in their ‘talent’ for foreign language learning, and that learning a new language does tend to become harder as we get older, it is worth noting the link between growth of the hippocampus and superior temporal gyrus and language proficiency. The STG is involved in acoustic-phonetic processes, while the hippocampus is presumably vital for the encoding of new words into long-term memory.

Interestingly, previous research with children has suggested that the ability to learn new words is greatly affected by working memory span — specifically, by how much information they can hold in that part of working memory called phonological short-term memory. While this is less important for adults learning another language, it remains important for one particular category of new words: words that have no ready association to known words. Given the languages being studied by these Swedish interpreters, it seems likely that much if not all of their new vocabulary would fall into this category.

I wonder if the link with STG is more significant in this study, because the languages are so different from the students’ native language? I also wonder if, and to what extent, you might be able to improve your phonological short-term memory with this sort of intensive practice.

In this regard, it’s worth noting that a previous study found that language proficiency correlated with growth in the left inferior frontal gyrus in a group of English-speaking exchange students learning German in Switzerland. Is this difference because the training was less intensive? because the students had prior knowledge of German? because German and English are closely related in vocabulary? (I’m picking the last.)

The researchers point out that hippocampal plasticity might also be a critical factor in determining an individual’s facility for learning a new language. Such plasticity does, of course, tend to erode with age — but this can be largely counteracted if you keep your hippocampus limber (as it were).

All these are interesting speculations, but the main point is clear: the findings add to the growing evidence that bilingualism and foreign language learning have particular benefits for the brain, and for protecting against cognitive decline.

tags strategies: 
tags problems: 
Topics: 

How stress affects your learning

October, 2012

A small study shows that stress makes it more likely for learning to use more complicated and subconscious processes that involve brain regions involved in habit and procedural learning.

We know that stress has a complicated relationship with learning, but in general its effect is negative, and part of that is due to stress producing anxious thoughts that clog up working memory. A new study adds another perspective to that.

The brain scanning study involved 60 young adults, of whom half were put under stress by having a hand immersed in ice-cold water for three minutes under the supervision of a somewhat unfriendly examiner, while the other group immersed their hand in warm water without such supervision (cortisol and blood pressure tests confirmed the stress difference).

About 25 minutes after this (cortisol reaches peak levels around 25 minutes after stress), participants’ brains were scanned while participants alternated between a classification task and a visual-motor control task. The classification task required them to look at cards with different symbols and learn to predict which combinations of cards announced rain and which sunshine. Afterward, they were given a short questionnaire to determine their knowledge of the task. The control task was similar but there were no learning demands (they looked at cards on the screen and made a simple perceptual decision).

In order to determine the strategy individuals used to do the classification task, ‘ideal’ performance was modeled for four possible strategies, of which two were ‘simple’ (based on single cues) and two ‘complex’ (based on multiple cues).

Here’s the interesting thing: while both groups were successful in learning the task, the two groups learned to do it in different ways. Far more of the non-stressed group activated the hippocampus to pursue a simple and deliberate strategy, focusing on individual symbols rather than combinations of symbols. The stressed group, on the other hand, were far more likely to use the striatum only, in a more complex and subconscious processing of symbol combinations.

The stressed group also remembered significantly fewer details of the classification task.

There was no difference between the groups on the (simple, perceptual) control task.

In other words, it seems that stress interferes with conscious, purposeful learning, causing the brain to fall back on more ‘primitive’ mechanisms that involve procedural learning. Striatum-based procedural learning is less flexible than hippocampus-based declarative learning.

Why should this happen? Well, the non-conscious procedural learning going on in the striatum is much less demanding of cognitive resources, freeing up your working memory to do something important — like worrying about the source of the stress.

Unfortunately, such learning will not become part of your more flexible declarative knowledge base.

The finding may have implications for stress disorders such as depression, addiction, and PTSD. It may also have relevance for a memory phenomenon known as “forgotten baby syndrome”, in which parents forget their babies in the car. This may be related to the use of non-declarative memory, because of the stress they are experiencing.

Reference: 
Topics: 

Pages