procedural memory

Surgical skills affected by previous-day excess alcohol consumption

May, 2011

Simulated laparoscopic surgery was impaired in both novices and experts on the day following an evening during which excessive alcohol was consumed.

Laparoscopic surgery makes intense demands on cognitive, perceptual and visuospatial abilities, rendering it particularly vulnerable to the effects of alcohol (and also making it a sensitive indicator). In a real-world type experiment, students and experts participated in a study looking at the effects of previous-night’s carousing on next-day’s performance on the Minimally Invasive Surgical Trainer Virtual Reality (for which all participants received training, providing baseline scores).

The first experiment involved 16 male final-year science students, of whom 8 were asked to consume alcohol freely at a group dinner, while the other 8 went to a dinner at which no alcohol was served. The second experiment involved eight laparoscopic experts, all of whom were asked to consume alcohol freely at their group dinner. Participants were tested on the simulator the next day at 9:00 a.m., 1:00 p.m. and 4:00 p.m.

Among the students, those who had consumed excessive alcohol performed considerably worse in terms of time, errors and economy of diathermy (ability to perform technique designed to produce local application of heat), and showed considerable performance variability. Their performance in terms of errors and diathermy was significantly impaired compared to that of the control group. Differences in the time it took participants to perform the tasks were only significant at 9:00 a.m.

Experts were (thankfully!) less impaired by their night out. Nevertheless, they made more errors than they had at baseline, and the difference at 1:00 p.m. was statistically significant. They were also significantly slower during the 1:00 p.m. tests. Performance had returned to baseline levels by 4:00 p.m.

Reference: 

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

Brain differences reflecting expertise

April, 2011

A new imaging study reveals what’s going on in the brains of expert shogi players that’s different from those of amateurs. It’s all about developing instincts.

The mental differences between a novice and an expert are only beginning to be understood, but two factors thought to be of importance are automaticity (the process by which a procedure becomes so practiced that it no longer requires conscious thought) and chunking (the unitizing of related bits of information into one tightly integrated unit — see my recent blog post on working memory). A new study adds to our understanding of this process by taking images of the brains of professional and amateur players of the Japanese chess-like game of shogi.

Eleven professional, 9 high- and 8 low-rank amateur players of shogi were presented with patterns of different types (opening shogi patterns, endgame shogi patterns, random shogi patterns, chess, Chinese chess, as well as completely different stimuli — scenes, faces, other objects, scrambled patterns).

It was found that the board game patterns, but not the other patterns, stimulated activity in the posterior precuneus of all shogi players. This activity, for the professional players, was particularly strong for shogi opening and endgame patterns, and activity in the precuneus was the only regional activity that showed a difference between these patterns and the other board game patterns. For the amateurs however, there was no differential activity for the endgame patterns, and only the high-rank amateurs showed differential activity for the opening shogi patterns. Opening patterns tend to be more stereotyped than endgame patterns (i.e., endgame patterns are better reflections of expertise).

The players were then asked for the best next-move in a series of shogi problems (a) when they only had one second to study the pattern, and (b) when they had eight seconds. When professional players had only a second to study the problem, the caudate nucleus was active. When they had 8 seconds, activity was confined to the cerebral cortex, as it was for the amateurs in both conditions. This activity in the caudate, which is part of the basal ganglia, deep within the brain, is thought to reflect the development of an intuitive response.

The researchers therefore suggest that this type of intuition, an instinct achieved through training and experience, is what marks an expert. Making part of the process unconscious not only makes it faster, but frees up valuable space in working memory for aspects that need conscious thought.

The posterior precuneus directly connects with the dorsolateral prefrontal cortex, which in turn connects to the caudate. There is also a direct connection between the precuneus and the caudate. This precuneus-caudate circuit is therefore suggested as a key part of what makes a board-game expert an expert.

Reference: 

Source: 

Topics: 

tags memworks: 

tags study: 

Individual differences in learning motor skills reflect brain chemical

April, 2011

An imaging study demonstrates that people who are quicker at learning a sequence of finger movements have lower levels of the inhibitory chemical GABA.

What makes one person so much better than another in picking up a new motor skill, like playing the piano or driving or typing? Brain imaging research has now revealed that one of the reasons appears to lie in the production of a brain chemical called GABA, which inhibits neurons from responding.

The responsiveness of some brains to a procedure that decreases GABA levels (tDCS) correlated both with greater brain activity in the motor cortex and with faster learning of a sequence of finger movements. Additionally, those with higher GABA concentrations at the beginning tended to have slower reaction times and less brain activation during learning.

It’s simplistic to say that low GABA is good, however! GABA is a vital chemical. Interestingly, though, low GABA has been associated with stress — and of course, stress is associated with faster reaction times and relaxation with slower ones. The point is, we need it in just the right levels, and what’s ‘right’ depends on context. Which brings us back to ‘responsiveness’ — more important than actual level, is the ability of your brain to alter how much GABA it produces, in particular places, at particular times.

However, baseline levels are important, especially where something has gone wrong. GABA levels can change after brain injury, and also may decline with age. The findings support the idea that treatments designed to influence GABA levels might improve learning. Indeed, tDCS is already in use as a tool for motor rehabilitation in stroke patients — now we have an idea why it works.

Reference: 

[2202] Stagg, C J., Bachtiar V., & Johansen-Berg H.
(2011).  The Role of GABA in Human Motor Learning.
Current Biology. 21(6), 480 - 484.

Source: 

Topics: 

tags memworks: 

tags problems: 

tags strategies: 

Role of expectation on memory consolidation during sleep

March, 2011

A new study suggests sleep’s benefits for memory consolidation depend on you wanting to remember.

Two experiments involving a total of 191 volunteers have investigated the parameters of sleep’s effect on learning. In the first experiment, people learned 40 pairs of words, while in the second experiment, subjects played a card game matching pictures of animals and objects, and also practiced sequences of finger taps. In both groups, half the volunteers were told immediately following the tasks that they would be tested in 10 hours. Some of the participants slept during this time.

As expected, those that slept performed better on the tests (all of them: word recall, visuospatial, and procedural motor memory), but the really interesting bit is that it turned out it was only the people who slept who also knew a test was coming that had improved memory recall. These people showed greater brain activity during deep or "slow wave" sleep, and for these people only, the greater the activity during slow-wave sleep, the better their recall.

Those who didn’t sleep, however, were unaffected by whether they knew there would be a test or not.

Of course, this doesn’t mean you never remember things you don’t intend or want to remember! There is more than one process going on in the encoding and storing of our memories. However, it does confirm the importance of intention, and cast light perhaps on some of your learning failures.

Reference: 

[2148] Wilhelm, I., Diekelmann S., Molzow I., Ayoub A., Mölle M., & Born J.
(2011).  Sleep Selectively Enhances Memory Expected to Be of Future Relevance.
The Journal of Neuroscience. 31(5), 1563 - 1569.

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

Gesturing while talking helps change your thoughts

February, 2011

A study involving problem-solving adds to recent research showing that gestures affect how you think and remember.

In a recent study, volunteers were asked to solve a problem known as the Tower of Hanoi, a game in which you have to move stacked disks from one peg to another. Later, they were asked to explain how they did it (very difficult to do without using your hands.) The volunteers then played the game again. But for some of them, the weight of the disks had secretly reversed, so that the smallest disk was now the heaviest and needed two hands.

People who had used one hand in their gestures when talking about moving the small disk were in trouble when that disk got heavier. They took longer to complete the task than did people who used two hands in their gestures—and the more one-handed gestures they used, the longer they took.

For those who had not been asked to explain their solution (and replayed the game in the interval) were unaffected by the disk weights changing. So even though they had repeated the action with the original weights, they weren’t thrown by the unexpected changes in weights, as those who gestured with one hand were.

The findings add to the evidence that gestures make thought concrete. Related research has indicated that children can come to understand abstract concepts in mathematics and science more readily if they gesture (and perhaps if their teachers gesture).

Reference: 

[2043] Beilock, S. L., & Goldin-Meadow S.
(2010).  Gesture Changes Thought by Grounding It in Action.
Psychological Science. 21(11), 1605 - 1610.

Source: 

Topics: 

tags memworks: 

tags strategies: 

Typing test reveals two processes in error detection

December, 2010

A study involving skilled typists shows how the part of a person that does the thinking relies on different feedback than the part that does the doing.

There are a number of ways experts think differently from novices (in their area of expertise). A new study involving 72 college-age typists with about 12 years of typing experience and typing speeds comparable to professional typists indicates that our idea that highly skilled activities operate at an unconscious level is a little more complex than we thought.

In three experiments, these skilled typists typed single words shown to them one at a time on a computer screen, while occasionally the researchers inserted errors in the words they typed, or corrected errors they made. When asked to report errors, typists took credit for corrected errors and accepted blame for inserted errors, claiming authorship for the appearance of the screen. Not surprising in the first experiment, when the typists weren’t told what the researchers were doing. But even in the later experiments, when they knew some of the errors and some of the corrections weren’t theirs, they still tended to take responsibility for what they saw.

Nevertheless, regardless of what they saw and what they thought, their typing rate wasn’t affected by inserted errors. Only when the typists themselves made errors, regardless of whether or not the researchers corrected them, did their fingers slow down.

In other words, it wasn’t the feedback of the look of the word on the screen that triggered the finger slow-down, but the ‘knowledge’ the fingers had as to what they had done.

But it was the appearance of the words on the screen that governed the typists’ reporting of errors, leading the researchers to propose two error detection processes: an outer loop that supports conscious reports and an inner loop process that slows keystrokes after errors.

Reference: 

Logan, G.D. & Crump, M.J.C. 2010. Cognitive Illusions of Authorship Reveal Hierarchical Error Detection in Skilled Typists. Science, 330 (6004), 683-686. http://www.sciencemag.org/content/330/6004/683.abstract?sid=140a96b9-ef5...

Source: 

Topics: 

tags memworks: 

tags problems: 

tags study: 

Have I done it?

October, 2010

Watching another person do something can leave you with the memory of having done it yourself.

I’m not at all sure why the researcher says they were “stunned” by these findings, since it doesn’t surprise me in the least, but a series of experiments into the role of imagination in creating false memories has revealed that people who had watched a video of someone else doing a simple action often remembered doing the action themselves two weeks later. In fact in my book on remembering intentions, which includes a chapter on remembering whether you’ve done something, I mention the risk of imagining yourself doing something (that you then go on to believe you have actually done it), and given all the research on mirror neurons, it’s no big step to go from watching someone doing something to remembering that you did it. Nevertheless, it’s nice to get the confirmation.

The experiments involved participants performing several simple actions, such as shaking a bottle or shuffling a deck of cards. Then they watched videos of someone else doing simple actions—some of which they had performed themselves and some of which they hadn’t. Two weeks later, they were asked which actions they had done. They were much more likely to falsely remember doing an action if they had watched someone else do it — even when they had been warned about the effect.

It seems likely that this is an unfortunate side-effect of a very useful ability — namely our ability to learn motor skills by observing others (using the aforesaid mirror neurons) — and there’s probably not a great deal we can do to prevent it happening. It’s just a reminder of how easy it is to form false memories.

Reference: 

[1839] Lindner, I., Echterhoff G., Davidson P. S. R., & Brand M.
(2010).  Observation Inflation.
Psychological Science. 21(9), 1291 - 1299.

Source: 

Topics: 

tags memworks: 

tags problems: 

Why it’s better to mix up your practice

August, 2010

New research confirms that it’s better to practice more than one skill at a time than to engage in repetitive drills of the same action, and reveals that different brain regions are involved in these two scenarios.

A new study explains why variable practice improves your memory of most skills better than practice focused on a single task. The study compared skill learning between those asked to practice one particular challenging arm movement, and those who practiced the movement with other related tasks in a variable practice structure. Using magnetic stimulation applied to different parts of the brain after training (which interferes with memory consolidation), it was found that interference to the dorsolateral prefrontal cortex, but not to the primary motor cortex, affected skill learning for those engaged in variable practice, whereas interference to the motor cortex, but not to the prefrontal cortex, affected learning in those engaged in constant practice.

These findings indicate that variable practice involves working memory (which happens in the prefrontal cortex) rather than motor memory, and that the need to re-engage with the task each time underlies the better learning produced by variable practice (which involves repeatedly switching between tasks). The experiment also helps set a time frame for this consolidation — interference four hours after training had no effect.

Reference: 

Source: 

Topics: 

tags memworks: 

tags strategies: 

Is practice sufficient for expertise?

July, 2010

A study of sight-reading ability in pianists confirms the importance of many hours of practice, but also suggests that working memory capacity makes a difference.

A new study challenges the popular theory that expertise is simply a product of tens of thousands of hours of deliberate practice. Not that anyone is claiming that this practice isn’t necessary — but it may not be sufficient. A study looking at pianists’ ability to sight-read music reveals working memory capacity helps sight-reading regardless of how much someone has practiced.

The study involved 57 volunteers who had played piano for an average of 18.6 years (range from one to 57 years). Their estimated hours of overall practice ranged from 260 to 31,096 (average: 5806), and hours of sight-reading practice ranged from zero to 9,048 (average: 1487 hours). Statistical analysis revealed that although hours of practice was the most important factor, nevertheless, working memory capacity did, independently, account for a small but significant amount of the variance between individuals.

It is interesting that not only did WMC have an effect independent of hours of practice, but hours of practice apparently had no effect on WMC — although the study was too small to tell whether a lot of practice at an early age might have affected WMC (previous research has indicated that music training can increase IQ in children).

The study is also too small to properly judge the effects of the 10,000 hours deliberate practice claimed necessary for expertise: the researchers did not advise the number of participants that were at that level, but the numbers suggest it was low.

It should also be noted that an earlier study involving 52 accomplished pianists found no effect of WMC on sight-reading ability (but did find a related effect: the ability to tap two fingers rapidly in alternation and to press a computer key quickly in response to visual and acoustic cues was unrelated to practice but correlated positively with good sight-readers).

Nevertheless, the findings are interesting, and do agree with what I imagine is the ‘commonsense’ view: yes, becoming an expert is all about the hours of effective practice you put in, but there are intellectual qualities that also matter. The question is: do they matter once you’ve put in the requisite hours of good practice?

Reference: 

Source: 

Topics: 

tags memworks: 

tags strategies: 

tags study: 

Sleep helps consolidation of a complex motor-learning task

July, 2010

Another study demonstrating the benefits of sleep for learning motor skills (in this case, a popular video game called "Guitar Hero III".

A number of studies have shown the benefits of sleep for consolidating motor learning. A new study extends this research to a more complex motor task: "Guitar Hero III", a popular video game. There was significantly greater improvement after a night’s sleep (average 68% in performance accuracy vs 63% for students who learnt the task in the morning and were tested in the evening), and a significant correlation between sleep duration and the amount of improvement.

Reference: 

Higginson, C.D. et al. 2010. So you wanna be a rock star? Sleep on it. Presented at SLEEP 2010, the 24th annual meeting of the Associated Professional Sleep Societies LLC, in San Antonio, Texas.

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

Pages

Subscribe to RSS - procedural memory
Error | About memory

Error

The website encountered an unexpected error. Please try again later.