intelligence neural

Evidence that IQ is rooted in two main brain networks

January, 2013

A very large online study helps decide between the idea of intelligence as a single factor (‘g’) versus having multiple domains.

An online study open to anyone, that ended up involving over 100,000 people of all ages from around the world, put participants through 12 cognitive tests, as well as questioning them about their background and lifestyle habits. This, together with a small brain-scan data set, provided an immense data set to investigate the long-running issue: is there such a thing as ‘g’ — i.e. is intelligence accounted for by just a single general factor; is it supported by just one brain network? — or are there multiple systems involved?

Brain scans of 16 healthy young adults who underwent the 12 cognitive tests revealed two main brain networks, with all the tasks that needed to be actively maintained in working memory (e.g., Spatial Working Memory, Digit Span, Visuospatial Working Memory) loading heavily on one, and tasks in which information had to transformed according to logical rules (e.g., Deductive Reasoning, Grammatical Reasoning, Spatial Rotation, Color-Word Remapping) loading heavily on the other.

The first of these networks involved the insula/frontal operculum, the superior frontal sulcus, and the ventral part of the anterior cingulate cortex/pre-supplementary motor area. The second involved the inferior frontal sulcus, inferior parietal lobule, and the dorsal part of the ACC/pre-SMA.

Just a reminder of individual differences, however — when analyzed by individual, this pattern was observed in 13 of the 16 participants (who are not a very heterogeneous bunch — I strongly suspect they are college students).

Still, it seems reasonable to conclude, as the researchers do, that at least two functional networks are involved in ‘intelligence’, with all 12 cognitive tasks using both networks but to highly variable extents.

Behavioral data from some 60,000 participants in the internet study who completed all tasks and questionnaires revealed that there was no positive correlation between performance on the working memory tasks and the reasoning tasks. In other words, these two factors are largely independent.

Analysis of this data revealed three, rather than two, broad components to overall cognitive performance: working memory; reasoning; and verbal processing. Re-analysis of the imaging data in search of the substrate underlying this verbal component revealed that the left inferior frontal gyrus and temporal lobes were significantly more active on tasks that loaded on the verbal component.

These three components could also be distinguished when looking at other factors. For example, while age was the most significant predictor of cognitive performance, its effect on the verbal component was much later and milder than it was for the other two components. Level of education was more important for the verbal component than the other two, while the playing of computer games had an effect on working memory and reasoning but not verbal. Chronic anxiety affected working memory but not reasoning or verbal. Smoking affected working memory more than the others. Unsurprisingly, geographical location affected verbal more than the other two components.

A further test, involving 35 healthy young adults, compared performance on the 12 tasks and score on the Cattell Culture Fair test (a classic pen and paper IQ test). The working memory component correlated most with the Cattell score, followed by the reasoning component, with the Verbal component (unsurprisingly, given that this is designed to be a ‘culture-fair’ test) showing the smallest correlation.

All of this is to say that this is decided evidence that what is generally considered ‘intelligence’ is based on the functioning of multiple brain networks rather than a single ‘g’, and that these networks are largely independent. Thus, the need to focus on and maintain task-relevant information maps onto one particular brain network, and is one strand. Another network specializes in transforming information, regardless of source or type. These, it would seem, are the main processes involved in fluid intelligence, while the Verbal component most likely reflects crystallized intelligence. There are also likely to be other networks which are not perhaps typically included in ‘general intelligence’, but are nevertheless critical for task performance (the researchers suggest the ability to adapt plans based on outcomes might be one such function).

The obvious corollary of all this is that similar IQ scores can reflect different abilities for these strands — e.g., even if your working memory capacity is not brilliant, you can develop your reasoning and verbal abilities. All this is consistent with the growing evidence that, although fundamental WMC might be fixed (and I use the word ‘fundamental’ deliberately, because WMC can be measured in a number of different ways, and I do think you can, at the least, effectively increase your WMC), intelligence (because some of its components are trainable) is not.

If you want to participate in this research, a new version of the tests is available at http://www.cambridgebrainsciences.com/theIQchallenge

Reference: 

[3214] Hampshire, A., Highfield R. R., Parkin B. L., & Owen A. M.
(2012).  Fractionating Human Intelligence.
Neuron. 76(6), 1225 - 1237.

Source: 

Topics: 

tags memworks: 

The importance of the cerebellum for intelligence and age-related cognitive decline

March, 2011
  • A new study of older adults indicates atrophy of the cerebellum is an important factor in cognitive decline for men, but not women.

Shrinking of the frontal lobe has been associated with age-related cognitive decline for some time. But other brain regions support the work of the frontal lobe. One in particular is the cerebellum. A study involving 228 participants in the Aberdeen Longitudinal Study of Cognitive Ageing (mean age 68.7) has revealed that there is a significant relationship between grey matter volume in the cerebellum and general intelligence in men, but not women.

Additionally, a number of other brain regions showed an association between gray matter and intelligence, in particular Brodmann Area 47, the anterior cingulate, and the superior temporal gyrus. Atrophy in the anterior cingulate has been implicated as an early marker of Alzheimer’s, as has the superior temporal gyrus.

The gender difference was not completely unexpected — previous research has indicated that the cerebellum shrinks proportionally more with age in men than women. More surprising was the fact that there was no significant association between white memory volume and general intelligence. This contrasts with the finding of a study involving older adults aged 79-80. It is speculated that this association may not develop until greater brain atrophy has occurred.

It is also interesting that the study found no significant relationship between frontal lobe volume and general intelligence — although the effect of cerebellar volume is assumed to occur via its role in supporting the frontal lobe.

The cerebellum is thought to play a vital role in three relevant areas: speed of information processing; variability of information processing; development of automaticity through practice.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags problems: 

Brain system behind general intelligence identified

February, 2010

Data from brain-lesion patients supports the idea that general intelligence depends on the brain's ability to integrate several different kinds of processing, and resides in a distributed network.

Using a large data set of 241 brain-lesion patients, researchers have mapped the location of each patient's lesion and correlated that with each patient's IQ score to produce a map of the brain regions that influence intelligence. Consistent with other recent findings, and with the theory that general intelligence depends on the brain's ability to integrate several different kinds of processing, they found general intelligence was determined by a distributed network in the frontal and parietal cortex, critically including white matter association tracts and frontopolar cortex. They suggest that general intelligence draws on connections between regions that integrate verbal, visuospatial, working memory, and executive processes.

Reference: 

[173] Gläscher, J., Rudrauf D., Colom R., Paul L. K., Tranel D., Damasio H., et al.
(2010).  Distributed neural system for general intelligence revealed by lesion mapping.
Proceedings of the National Academy of Sciences. 107(10), 4705 - 4709.

Source: 

Topics: 

tags memworks: 

Subscribe to RSS - intelligence neural
Error | About memory

Error

The website encountered an unexpected error. Please try again later.