Cognitive Training

Latest Research News

A study showing that a certain type of instructor-led brain training protocol can stimulate structural changes in the brain and neural connections even years after a traumatic brain injury (TBI) challenges the widely held belief that recovery from a TBI is limited to two years after an injury.

The study included 60 adults with TBI symptoms lasting an average of eight years. Participants were randomly placed into one of two cognitive training groups:

  • strategy-based reasoning training called Strategic Memory Advanced Reasoning Training (SMART), focused on selective attention, abstract reasoning, and other thinking strategies
  • knowledge-based training called Brain Health Workshop (BHW), focused on education regarding brain structure and function and the effects of sleep and exercise on the brain performance

Both programs comprised 12 1.5-hour sessions over 8 weeks conducted in small group settings (4–5 participants), and instruction was given using a series of slides.

More specifically, the SMART group was trained to

  • block distractions and irrelevant information and avoid multitasking
  • understand main ideas and take‐home messages
  • examine information from different perspectives.

The BHW group learned about

  • brain anatomy
  • brain function
  • the effects of a TBI on cognitive function
  • the principles of neuroplasticity
  • the impact of diet, physical exercise, sleep, and social activities on brain health.

Those in the strategy-based reasoning training showed a greater change in cortical thickness and connectivity compared to individuals who received the knowledge-based training. Changes in cortical thickness and functional connectivity also correlated to an individual's ability to switch between tasks quickly and consistently to achieve a specific goal.

Moreover, those who showed the greatest change in cortical thickness and connectivity, showed the greatest improvements in cognitive performance.

https://www.eurekalert.org/pub_releases/2017-05/cfb-sbt052217.php

Paper available at https://onlinelibrary.wiley.com/doi/full/10.1002/brb3.687

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

While the effects of reasoning and memory training did not differ as a function of how much education the individual had, those older adults with less than a complete high school education experienced a 50% greater benefit from speed of information processing training than college graduates. This advantage was maintained for three years after the end of the training.

The training involved ten 60 to 75-minute sessions over six weeks that focused on visual search and processing information in shorter and shorter times.

Both reasoning and information processing speed training resulted in improved targeted cognitive abilities for 10 years among participants, but memory training did not. Memory training focused on mnemonic strategies for remembering lists and sequences of items, text material, and main ideas and details of stories and other text-based information. Reasoning training focused on improving the ability to solve problems containing a serial pattern.

The researchers speculate that speed of information processing training might help those with less than 12 years of education, who are at greater risk of dementia, close the gap between them and those with more education.

The training modules have been translated into online games delivered by Posit Science.

Less educated study participants were slightly older, less likely to be married, more likely to be African-American, and more likely to have hypertension or diabetes as well as heart disease than the more educated older adults.

http://www.eurekalert.org/pub_releases/2016-01/iu-irs012816.php

Training in a mental imagery technique has been found to help multiple sclerosis patients in two memory domains often affected by the disease: autobiographical memory and episodic future thinking.

The study involved 40 patients with relapsing-remitting MS, all of whom were receiving regular drug therapy and all of whom had significant brain atrophy. Participants were randomly assigned to one of three groups, one of which received the imagery training (17 participants), while the other two were controls — a control receiving a sham verbal training (10) and a control receiving no training (13). The six training sessions lasted two hours and occurred once or twice a week.

The training involved:

  • mental visualization exercises of increasing difficulty, using 10 items that the patient had to imagine and describe, looking at both static aspects (such as color and shape) and an action carried out with the item
  • guided construction exercises, using 5 scenarios involving several characters (so, for example, the patient might start with the general idea of a cook preparing a meal, and be guided through more complexities, such as the type of table, the ingredients being used, etc)
  • self-visualization exercises, in which the patient imagined themselves within a scenario.

Autobiographical memory and episodic future thinking were assessed, before and after, using an adapted version of the Autobiographical Interview, which involves subjects recalling events from earlier periods in their life, in response to specific cue words. The events are supposed to be unique, and the subjects are asked to recall as many details as possible.

Only those receiving the training showed a significant improvement in their scores.

Those who had the imagery training also reported an increase in general self-confidence, with higher levels of control and vitality.

Remembering past events and imagining future ones are crucial cognitive abilities, with more far-reaching impacts than may be immediately obvious. For example, episodic future thought is important for forming and carrying out intentions.

These are also areas which may be affected by age. A recent study, for example, found that older adults are less likely to spontaneously acquire items that would later allow a problem to be solved, and are also less likely to subsequently use these items to solve the problems. An earlier study found that older adults have more difficulty in imagining future experiences.

These results, then, that show us that people with deficits in specific memory domains can be helped by specific training, is not only of interest to those with MS, but also more generally.

http://www.eurekalert.org/pub_releases/2015-08/ip-mvi082515.php

Cognitive impairment affects 40-65% of people with MS. Why? In the past year, a number of studies have helped us build a better picture of the precise nature of cognitive problems that may affect multiple sclerosis sufferers:

  • poorer performance on executive function tasks is fully explained by slower processing speed (which is presumably a function of the degradation in white matter characteristic of MS)
  • slowing in processing speed is associated with weaker connections between the executive area and the brain regions involved in carrying out cognitive tasks
  • cognitive reserve helps counter the decline in memory and cognitive efficiency
  • brain reserve (greater brain volume, ie less shrinkage) helps counter the decline in cognitive efficiency
  • working memory capacity explains the link between cognitive reserve and long-term memory
  • subjective cognitive fatigue is linked to the time spent on the task, not on its difficulty
  • mnemonic training helps protect against cognitive decline, but appears to be less helpful in those with slow processing speed.

What all this implies is that a multi-pronged approach is called for, involving:

  • working memory training
  • training in effective memory strategies
  • practice in breaking down cognitive tasks into more manageable chunks of time
  • practice in framing tasks to accommodate slower processing speed
  • physical and mental activities that encourage neurogenesis (growing more neurons) and synaptogenesis (growing more connections).

Here's some more detail on those studies:

Slow processing speed accounts for executive deficits in MS

A study of 50 patients with MS and 28 healthy controls found no differences in performance on executive function tasks when differences in processing speed were controlled for. In other words, although MS patients performed more poorly than controls on these tasks, the difference was fully accounted for by the differences in processing speed. There were no differences in performance when there was no processing speed component to the task. Similarly, MS patients with a greater degree of brain atrophy performed more poorly than those with less atrophy, but again, this only occurred when there was a processing speed aspect to the task, and was fully accounted for by processing speed differences.

http://www.eurekalert.org/pub_releases/2014-09/kf-kfs091614.php

[3939] Leavitt, V. M., Wylie G., Krch D., Chiaravalloti N. D., DeLuca J., & Sumowski J. F.
(2014).  Does slowed processing speed account for executive deficits in multiple sclerosis? Evidence from neuropsychological performance and structural neuroimaging..
Rehabilitation Psychology. 59(4), 422 - 428.

Functional connectivity factor in cognitive decline in MS

A brain imaging study involving 29 participants with relapsing-remitting MS and 23 age- and sex- matched healthy controls found that, as expected, those with MS were much slower on a processing speed task, although they were as accurate as the controls. This slowing was associated with weaker functional connections between the dorsolateral prefrontal cortex (the executive area) and the regions responsible for carrying out the task. It's thought that this is probably due to decreased white matter (white matter degradation is symptomatic of MS).

http://www.eurekalert.org/pub_releases/2015-07/cfb-srb070715.php

[3938] Hubbard, N. A., Hutchison J. L., Turner M. P., Sundaram S., Oasay L., Robinson D., et al.
(2015).  Asynchrony in Executive Networks Predicts Cognitive Slowing in Multiple Sclerosis.
Neuropsychology.

Brain and cognitive reserve protect against cognitive decline in MS

A study compared memory, cognitive efficiency, vocabulary, and brain volume in 40 patients with MS, at baseline and 4.5 years later. After controlling for disease progression, they found that those with better vocabulary (a proxy for cognitive reserve) experienced less decline in memory and cognitive efficiency, and those with less brain atrophy over the period showed less decline in cognitive efficiency.

Cognitive efficiency is a somewhat fuzzy concept, but essentially has to do with how much time and effort you need to acquire new knowledge; in this study, it was assessed using the Symbol Digit Modalities Test and Paced Auditory Serial Addition Task, two tests commonly used to detect cognitive impairment in MS patients.

http://www.eurekalert.org/pub_releases/2014-04/kf-mrf043014.php

[3943] Sumowski, J. F., Rocca M. A., Leavitt V. M., Dackovic J., Mesaros S., Drulovic J., et al.
(2014).  Brain reserve and cognitive reserve protect against cognitive decline over 4.5 years in MS.
Neurology. 82(20), 1776 - 1783.

Working memory capacity accounts for link between cognitive reserve & better memory

A study involving 70 patients with MS has found that working memory capacity explained the relationship between cognitive reserve and long-term memory, suggesting that interventions targeted at working memory may help protect against decline in long-term memory.

http://www.eurekalert.org/pub_releases/2014-09/kf-kfm090914.php

[3941] Sandry, J., & Sumowski J. F.
(2014).  Working Memory Mediates the Relationship between Intellectual Enrichment and Long-Term Memory in Multiple Sclerosis: An Exploratory Analysis of Cognitive Reserve.
Journal of the International Neuropsychological Society. 20(08), 868 - 872.

Cognitive fatigue linked to time on task, not difficulty

A study investigating cognitive fatigue in 32 individuals with MS and 24 controls has found that subjective and objective fatigue were independent of one another, and that subjective cognitive fatigue increased as time on task increased. This increase in cognitive fatigue was greater in the MS group. No relationship was found between cognitive fatigue and cognitive load. Fatigue was greater for the processing speed task than the working memory task.

In other words, the length of time spent is far more important than the difficulty of the task.

http://www.eurekalert.org/pub_releases/2015-01/kf-kfr012115.php

[3940] Sandry, J., Genova H. M., Dobryakova E., DeLuca J., & Wylie G.
(2014).  Subjective cognitive fatigue in multiple sclerosis depends on task length.
Frontiers in Neurology. 5, 214.

Story mnemonic training helps some

A series of small studies have found cognitive benefits for MS patients from a 10-session training program designed to build their memory skills using a modified story mnemonic. The MEMREHAB Trial involved 85 patients with MS, of whom 45 received the training. In the most recent analyses of the data, the benefits were found to be maintained six months later, but unfortunately, it appears that those with processing speed deficits gain less benefit from the training.

The training consists of four 45-minute sessions focused on building imagery skills, in which participants were given a story with highly visualizable scenes and given facilitated practice in using visualization to help them remember the story. In the next four sessions, they were given lists of words and instructed in how to build a memorable story from these words, that they could visualize. The sessions employed increasingly unrelated word lists. In the final two sessions, participants were taught how to apply the technique in real-world situations.

http://www.eurekalert.org/pub_releases/2014-08/kf-kfs080814.php

[3936] Chiaravalloti, N. D., & DeLuca J.
(2015).  The influence of cognitive dysfunction on benefit from learning and memory rehabilitation in MS: A sub-analysis of the MEMREHAB trial.
Multiple Sclerosis (Houndmills, Basingstoke, England).

[3937] Dobryakova, E., Wylie G. R., DeLuca J., & Chiaravalloti N. D.
(2014).  A pilot study examining functional brain activity 6 months after memory retraining in MS: the MEMREHAB trial.
Brain Imaging and Behavior. 8(3), 403 - 406.

Preliminary findings from a small study show that older adults (68-91), after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their working memory (updating), compared to their baseline performance. Two other groups of 14 showed no change. The second group of 14 were taught to use a private online diary site (Penzu.com), while the third control group were told they were on a wait-list for Facebook training.

Wohltmann, Janelle. 2013. Presented at the International Neuropsychological Society’s annual meeting in Hawaii.

Report on Futurity

Here’s an encouraging study for all those who think that, because of age or physical damage, they must resign themselves to whatever cognitive impairment or decline they have suffered. In this study, older adults who had suffered from aphasia for a long time nevertheless improved their language function after six weeks of intensive training.

The study involved nine seniors with chronic aphasia and 10 age-matched controls. Those with aphasia were given six weeks of intensive and specific language therapy, after which they showed significantly better performance at naming objects. Brain scans revealed that the training had not only stimulated language circuits, but also integrated the default mode network (the circuits used when our brain is in its ‘resting state’ — i.e., not thinking about anything in particular), producing brain activity that was similar to that of the healthy controls.

Moreover, these new circuits continued to be active after training, with participants continuing to improve.

Previous research has implicated abnormal functioning of the default mode network in other cognitive disorders.

Although it didn’t reach significance, there was a trend suggesting that the level of integration of the default mode network prior to therapy predicted the outcome of the training.

The findings are especially relevant to the many seniors who no longer receive treatment for stroke damage they may have had for many years. They also add to the growing evidence for the importance of the default mode network. Changes in the integration of the default mode network with other circuits have also been implicated in age-related cognitive decline and Alzheimer’s.

Interestingly, some research suggests that meditation may help improve the coherence of brainwaves that overlap the default mode network. Meditation, already shown to be helpful for improving concentration and focus, may be of greater benefit for fighting age-related cognitive decline than we realize!

Cancer survivors who underwent chemotherapy often suffer long-term cognitive problems. Until now, most research has been occupied with establishing that this is in fact the case, and studies investigating how to help have been rare. I recently reported on studies suggesting that help with sleep problems and stress can be beneficial. It has also been suggested that exercise can help. None of these suggestions are special to cancer survivors (although cancer survivors may well be one of several groups that derive particular benefit). Similarly, a new study investigates another familiar approach to improving cognitive decline.

The pilot study involved 82 post-menopausal breast cancer survivors (average age 56) who had received chemotherapy and who were worried about their cognitive abilities. The women were randomly assigned to one of three groups: one group received memory training adapted from the ACTIVE (Advanced Cognitive Training for Independent and Vital Elderly) trial; another received processing speed training using Posit Science’s Insight program (commercially available); the third was a wait-listed control group.

Training consisted of ten 1-hour small-group (3-5 people) sessions over 6-8 weeks. Memory training involved learning strategies and applying them to word lists, sequences, and texts. Strategies included mnemonic techniques, as well as instruction in principles of meaningfulness, organization, visualization, and association. Strategies were taught and practiced in the first five sessions, and further practiced in the remaining sessions.

In the Insight program, stimulus duration is progressively shortened during a series of progressively more difficult information-processing tasks, such as time-order judgment, discrimination, spatial-match, forward-span, instruction-following, and narrative-memory tasks. Exercises automatically adjust to maintain an 85% correct rate.

Both programs proved beneficial. The memory training group showed significant improvement in immediate and delayed memory, which was maintained at the two-month follow-up. There was of course individual variability: 39% showed significant improvement on immediate memory (compared to 18% of controls) and 42% on delayed memory (compared to 11% of controls). While the group as a whole didn’t show significant improvement in processing speed, some 73% of the group showed reliable improvement at the two-month follow-up.

The Insight group showed significant improvement on both memory and processing speed. Some 68% improved processing speed (compared to 43% of controls). But note that at the 2-month follow-up, the 67% of the Insight group is not that much greater than the 61% of the controls (demonstrating very clearly the benefits of even the small amount of practice received in testing) and is in fact less than the 73% of the memory group.

The Insight group also showed significant improvement in memory. At two-month follow-up, some 30% of the Insight group had improved immediate memory (compared to the 18% of controls), and 33% had improved delayed memory (vs 11%).

Both training programs had a positive effect on perceived cognitive functioning and symptom distress (mood, anxiety, fatigue), and there was no difference between the groups in terms of satisfaction with the training (both groups were very satisfied).

The researchers concluded that, while both training programs were promising, the dual effect of processing speed training (on memory as well as processing speed) argued for its broader benefits.

However, I note that, although the size of the effect of memory training on processing speed was too small to reach statistical significance, the fact that the number of participants showing reliable improvement was greater than that of the Insight group points to an equally broad effect of memory training. If the memory training was supplemented by a small amount of practice on tasks designed to boost processing speed, it would seem to me that this might produce greater cognitive benefits than the processing speed training. Indeed, the Insight program was, I believe, first developed in the context of the ACTIVE program, and I have, of course, talked before about the value of training that includes multiple domains.

Still, the main message of this study should not be overlooked: it demonstrates that many cancer survivors suffering from cognitive decline can improve their cognitive performance through training and practice.

We know that people with depression tend to focus on, and remember, negative memories rather than positive. Interestingly, it’s not simply an emotion effect. People with depression, and even those at risk of depression (including those who have had depression), tend to have trouble remembering specific autobiographical memories. That is, memories of events that happened to them at a specific place and time (as opposed to those generalized event memories we construct from similar events, such as the ‘going to the dentist’ memory).

This cognitive difficulty seems to exacerbate their depression, probably through its effect on social encounters and relationships.

A new study, however, has found that a particular training program (“Memory Specificity Training”) can help both their memory for specific events and their symptoms of depression.

The study involved 23 adolescent Afghani refugees in Iran, all of whom had lost their fathers in the war in Afghanistan and who showed symptoms of depression. Half were randomly assigned to the five-week memory training program and half received no training.

The training program involved a weekly 80-minute group session, in which participants learned about different types of memory and memory recall, and practiced recalling specific memories after being given positive, neutral, and negative keywords.

Participants’ memory for specific events was tested at the start of the study, at the end of the five-week training period, and two months after the end of the training. Compared to the control group, those given the training were able to provide more specific memories after the training, and showed fewer symptoms of depression at the two month follow-up (but not immediately after the end of training).

The study follows on from a pilot study in which ten depressed female patients were given four weekly one-hour sessions of memory training. Improvements in memory retrieval were associated with less rumination (dwelling on things), less cognitive avoidance, and improvements in problem-solving skills.

It’s somewhat unfortunate that the control group were given no group sessions, indeed no contact (apart from the tests) of any kind. Nevertheless, and bearing in mind that these are still very small studies, the findings do suggest that it would be helpful to include a component on memory training in any cognitive behavioral therapy for depression.

A small Swedish brain imaging study adds to the evidence for the cognitive benefits of learning a new language by investigating the brain changes in students undergoing a highly intensive language course.

The study involved an unusual group: conscripts in the Swedish Armed Forces Interpreter Academy. These young people, selected for their talent for languages, undergo an intensive course to allow them to learn a completely novel language (Egyptian Arabic, Russian or Dari) fluently within ten months. This requires them to acquire new vocabulary at a rate of 300-500 words every week.

Brain scans were taken of 14 right-handed volunteers from this group (6 women; 8 men), and 17 controls that were matched for age, years of education, intelligence, and emotional stability. The controls were medical and cognitive science students. The scans were taken before the start of the course/semester, and three months later.

The brain scans revealed that the language students showed significantly greater changes in several specific regions. These regions included three areas in the left hemisphere: the dorsal middle frontal gyrus, the inferior frontal gyrus, and the superior temporal gyrus. These regions all grew significantly. There was also some, more selective and smaller, growth in the middle frontal gyrus and inferior frontal gyrus in the right hemisphere. The hippocampus also grew significantly more for the interpreters compared to the controls, and this effect was greater in the right hippocampus.

Among the interpreters, language proficiency was related to increases in the right hippocampus and left superior temporal gyrus. Increases in the left middle frontal gyrus were related to teacher ratings of effort — those who put in the greatest effort (regardless of result) showed the greatest increase in this area.

In other words, both learning, and the effort put into learning, had different effects on brain development.

The main point, however, is that language learning in particular is having this effect. Bear in mind that the medical and cognitive science students are also presumably putting in similar levels of effort into their studies, and yet no such significant brain growth was observed.

Of course, there is no denying that the level of intensity with which the interpreters are acquiring a new language is extremely unusual, and it cannot be ruled out that it is this intensity, rather than the particular subject matter, that is crucial for this brain growth.

Neither can it be ruled out that the differences between the groups are rooted in the individuals selected for the interpreter group. The young people chosen for the intensive training at the interpreter academy were chosen on the basis of their talent for languages. Although brain scans showed no differences between the groups at baseline, we cannot rule out the possibility that such intensive training only benefited them because they possessed this potential for growth.

A final caveat is that the soldiers all underwent basic military training before beginning the course — three months of intense physical exercise. Physical exercise is, of course, usually very beneficial for the brain.

Nevertheless, we must give due weight to the fact that the brain scans of the two groups were comparable at baseline, and the changes discussed occurred specifically during this three-month learning period. Moreover, there is growing evidence that learning a new language is indeed ‘special’, if only because it involves such a complex network of processes and brain regions.

Given that people vary in their ‘talent’ for foreign language learning, and that learning a new language does tend to become harder as we get older, it is worth noting the link between growth of the hippocampus and superior temporal gyrus and language proficiency. The STG is involved in acoustic-phonetic processes, while the hippocampus is presumably vital for the encoding of new words into long-term memory.

Interestingly, previous research with children has suggested that the ability to learn new words is greatly affected by working memory span — specifically, by how much information they can hold in that part of working memory called phonological short-term memory. While this is less important for adults learning another language, it remains important for one particular category of new words: words that have no ready association to known words. Given the languages being studied by these Swedish interpreters, it seems likely that much if not all of their new vocabulary would fall into this category.

I wonder if the link with STG is more significant in this study, because the languages are so different from the students’ native language? I also wonder if, and to what extent, you might be able to improve your phonological short-term memory with this sort of intensive practice.

In this regard, it’s worth noting that a previous study found that language proficiency correlated with growth in the left inferior frontal gyrus in a group of English-speaking exchange students learning German in Switzerland. Is this difference because the training was less intensive? because the students had prior knowledge of German? because German and English are closely related in vocabulary? (I’m picking the last.)

The researchers point out that hippocampal plasticity might also be a critical factor in determining an individual’s facility for learning a new language. Such plasticity does, of course, tend to erode with age — but this can be largely counteracted if you keep your hippocampus limber (as it were).

All these are interesting speculations, but the main point is clear: the findings add to the growing evidence that bilingualism and foreign language learning have particular benefits for the brain, and for protecting against cognitive decline.

Here’s an exciting little study, implying as it does that one particular aspect of information processing underlies much of the cognitive decline in older adults, and that this can be improved through training. No, it’s not our usual suspect, working memory, it’s something far less obvious: temporal processing.

In the study, 30 older adults (aged 65-75) were randomly assigned to three groups: one that received ‘temporal training’, one that practiced common computer games (such as Solitaire and Mahjong), and a no-activity control. Temporal training was provided by a trademarked program called Fast ForWord Language® (FFW), which was developed to help children who have trouble reading, writing, and learning.

The training, for both training groups, occupied an hour a day, four days a week, for eight weeks.

Cognitive assessment, carried out at the beginning and end of the study, and for the temporal training group again 18 months later, included tests of sequencing abilities (how quickly two sounds could be presented and still be accurately assessed for pitch or direction), attention (vigilance, divided attention, and alertness), and short-term memory (working memory span, pattern recognition, and pattern matching).

Only in the temporal training group did performance on any of the cognitive tests significantly improve after training — on the sequencing tests, divided attention, matching complex patterns, and working memory span. These positive effects still remained after 18 months (vigilance was also higher at the end of training, but this improvement wasn’t maintained).

This is, of course, only a small pilot study. I hope we will see a larger study, and one that compares this form of training against other computer training programs. It would also be good to see some broader cognitive tests — ones that are less connected to the temporal training. But I imagine that, as I’ve discussed before, an effective training program will include more than one type of training. This may well be an important component of such a program.

[3075] Szelag, E., & Skolimowska J.
(2012).  Cognitive function in elderly can be ameliorated by training in temporal information processing.
Restorative Neurology and Neuroscience. 30(5), 419 - 434.

Spatial abilities have been shown to be important for achievement in STEM subjects (science, technology, engineering, math), but many people have felt that spatial skills are something you’re either born with or not.

In a comprehensive review of 217 research studies on educational interventions to improve spatial thinking, researchers concluded that you can indeed improve spatial skills, and that such training can transfer to new tasks. Moreover, not only can the right sort of training improve spatial skill in general, and across age and gender, but the effect of training appears to be stable and long-lasting.

One interesting finding (the researchers themselves considered it perhaps the most important finding) was the diversity in effective training — several different forms of training can be effective in improving spatial abilities. This may have something to do with the breadth covered by the label ‘spatial ability’, which include such skills as:

  • Perceiving objects, paths, or spatial configurations against a background of distracting information;
  • Piecing together objects into more complex configurations, visualizing and mentally transforming objects;
  • Understanding abstract principles, such as horizontal invariance;
  • Visualizing an environment in its entirety from a different position.

The review compared three types of training. Those that used:

  • Video games (24 studies)
  • Semester-long instructional courses on spatial reasoning (42 studies)
  • Practical training, often in a lab, that involved practicing spatial tasks, strategic instruction, or computerized lessons (138 studies).

The first two are examples of indirect training, while the last involves direct training.

On average, taken across the board, training improved performance by well over half a standard deviation when considered on its own, and still almost one half of a standard deviation when compared to a control group. This is a moderately large effect, and it extended to transfer tasks.

It also conceals a wide range, most of which is due to different treatment of control groups. Because the retesting effect is so strong in this domain (if you give any group a spatial test twice, regardless of whether they’ve been training in between the two tests, they’re going to do better on the second test), repeated testing can have a potent effect on the control group. Some ‘filler’ tasks can also inadvertently improve the control group’s performance. All of this will reduce the apparent effect of training. (Not having a control group is even worse, because you don’t know how much of the improvement is due to training and how much to the retesting effect.)

This caution is, of course, more support for the value of practice in developing spatial skills. This is further reinforced by studies that were omitted from the analysis because they would skew the data. Twelve studies found very high effect sizes — more than three times the average size of the remaining studies. All these studies took place in poorly developed countries (those with a Human Development Index above 30 at the time of the study) — Malaysia, Turkey, China, India, and Nigeria. HDI rating was even associated with the benefits of training in a dose-dependent manner — that is, the lower the standard of living, the greater the benefit.

This finding is consistent with other research indicating that lower socioeconomic status is associated with larger responses to training or intervention.

In similar vein, when the review compared 19 studies that specifically selected participants who scored poorly on spatial tests against the other studies, they found that the effects of training were significantly bigger among the selected studies.

In other words, those with poorer spatial skills will benefit most from training. It may be, indeed, that they are poor performers precisely because they have had little practice at these tasks — a question that has been much debated (particularly in the context of gender differences).

It’s worth noting that there was little difference in performance on tests carried out immediately after training ended, within a week, or within a month, indicating promising stability.

A comparison of different types of training did find that some skills were more resistant to training than others, but all types of spatial skill improved. The differences may be because some sorts of skill are harder to teach, and/or because some skills are already more practiced than others.

Given the demonstrated difficulty in increasing working memory capacity through training, it is intriguing to notice one example the researchers cite: experienced video game players have been shown to perform markedly better on some tasks that rely on spatial working memory, such as a task requiring you to estimate the number of dots shown in a brief presentation. Most of us can instantly recognize (‘subitize’) up to five dots without needing to count them, but video game players can typically subitize some 7 or 8. The extent to which this generalizes to a capacity to hold more elements in working memory is one that needs to be explored. Video game players also apparently have a smaller attentional blink, meaning that they can take in more information.

A more specific practical example of training they give is that of a study in which high school physics students were given training in using two- and three-dimensional representations over two class periods. This training significantly improved students’ ability to read a topographical map.

The researchers suggest that the size of training effect could produce a doubling of the number of people with spatial abilities equal to or greater than that of engineers, and that such training might lower the dropout rate among those majoring in STEM subjects.

Apart from that, I would argue many of us who are ‘spatially-challenged’ could benefit from a little training!

I’ve reported before on how London taxi drivers increase the size of their posterior hippocampus by acquiring and practicing ‘the Knowledge’ (but perhaps at the expense of other functions). A new study in similar vein has looked at the effects of piano tuning expertise on the brain.

The study looked at the brains of 19 professional piano tuners (aged 25-78, average age 51.5 years; 3 female; 6 left-handed) and 19 age-matched controls. Piano tuning requires comparison of two notes that are close in pitch, meaning that the tuner has to accurately perceive the particular frequency difference. Exactly how that is achieved, in terms of brain function, has not been investigated until now.

The brain scans showed that piano tuners had increased grey matter in a number of brain regions. In some areas, the difference between tuners and controls was categorical — that is, tuners as a group showed increased gray matter in right hemisphere regions of the frontal operculum, the planum polare, superior frontal gyrus, and posterior cingulate gyrus, and reduced gray matter in the left hippocampus, parahippocampal gyrus, and superior temporal lobe. Differences in these areas didn’t vary systematically between individual tuners.

However, tuners also showed a marked increase in gray matter volume in several areas that was dose-dependent (that is, varied with years of tuning experience) — the anterior hippocampus, parahippocampal gyrus, right middle temporal and superior temporal gyrus, insula, precuneus, and inferior parietal lobe — as well as an increase in white matter in the posterior hippocampus.

These differences were not affected by actual chronological age, or, interestingly, level of musicality. However, they were affected by starting age, as well as years of tuning experience.

What these findings suggest is that achieving expertise in this area requires an initial development of active listening skills that is underpinned by categorical brain changes in the auditory cortex. These superior active listening skills then set the scene for the development of further skills that involve what the researchers call “expert navigation through a complex soundscape”. This process may, it seems, involve the encoding and consolidating of precise sound “templates” — hence the development of the hippocampal network, and hence the dependence on experience.

The hippocampus, apart from its general role in encoding and consolidating, has a special role in spatial navigation (as shown, for example, in the London cab driver studies, and the ‘parahippocampal place area’). The present findings extend that navigation in physical space to the more metaphoric one of relational organization in conceptual space.

The more general message from this study, of course, is confirmation for the role of expertise in developing specific brain regions, and a reminder that this comes at the expense of other regions. So choose your area of expertise wisely!

I have said before that there is little evidence that working memory training has any wider benefits than to the skills being practiced. Occasionally a study arises that gets everyone all excited, but by and large training only benefits the skill being practiced — despite the fact that working memory underlies so many cognitive tasks, and limited working memory capacity is thought to negatively affect performance on so many tasks. However, one area that does seem to have had some success is working memory training for those with ADHD, and researchers have certainly not given hope of finding evidence for wider transfer among other groups (such as older adults).

A recent review of the research to date has, sadly, concluded that the benefits of working memory training programs are limited. But this is not to say there are no benefits.

For a start, the meta-analysis (analyzing data across studies) found that working memory training produced large immediate benefits for verbal working memory. These benefits were greatest for children below the age of 10.

These benefits, however, were not maintained long-term (at an average of 9 months after training, there were no significant benefits) — although benefits were found in one study in which the verbal working memory task was very similar to the training task (indicating that the specific skill practiced did maintain some improvement long-term).

Visuospatial working memory also showed immediate benefits, and these did not vary across age groups. One factor that did make a difference was type of training: the CogMed training program produced greater improvement than the researcher-developed programs (the studies included 7 that used CogMed, 2 that used Jungle Memory, 2 Cognifit, 4 n-back, 1 Memory Booster, and 7 researcher-developed programs).

Interestingly, visuospatial working memory did show some long-term benefits, although it should be noted that the average follow-up was distinctly shorter than that for verbal working memory tasks (an average of 5 months post-training).

The burning question, of course, is how well this training transferred to dissimilar tasks. Here the evidence seems sadly clear — those using untreated control groups tended to find such transfer; those using treated control groups never did. Similarly, nonrandomized studies tended to find far transfer, but randomized studies did not.

In other words, when studies were properly designed (randomized trials with a control group that is given alternative treatment rather than no treatment), there was no evidence of transfer effects from working memory training to nonverbal ability. Moreover, even when found, these effects were only present immediately and not on follow-up.

Neither was there any evidence of transfer effects, either immediate or delayed, on verbal ability, word reading, or arithmetic. There was a small to moderate effect on training on attention (as measured by the Stroop test), but this only occurred immediately, and not on follow-up.

It seems clear from this review that there are few good, methodologically sound studies on this subject. But three very important caveats should be noted in connection with the researchers’ dispiriting conclusion.

First of all, because this is an analysis across all data, important differences between groups or individuals may be concealed. This is a common criticism of meta-analysis, and the researchers do try and answer it. Nevertheless, I think it is still a very real issue, especially in light of evidence that the benefit of training may depend on whether the challenge of the training is at the right level for the individual.

On the other hand, another recent study, that compared young adults who received 20 sessions of training on a dual n-back task or a visual search program, or received no training at all, did look for an individual-differences effect, and failed to find it. Participants were tested repeatedly on their fluid intelligence, multitasking ability, working memory capacity, crystallized intelligence, and perceptual speed. Although those taking part in the training programs improved their performance on the tasks they practiced, there was no transfer to any of the cognitive measures. When participants were analyzed separately on the basis of their improvement during training, there was still no evidence of transfer to broader cognitive abilities.

The second important challenge comes from the lack of skill consolidation — having a short training program followed by months of not practicing the skill is not something any of us would expect to produce long-term benefits.

The third point concerns a recent finding that multi-domain cognitive training produces longer-lasting benefits than single-domain training (the same study also showed the benefit of booster training). It seems quite likely that working memory training is a valuable part of a training program that also includes practice in real-world tasks that incorporate working memory.

I should emphasize that these results only apply to ‘normal’ children and adults. The question of training benefits for those with attention difficulties or early Alzheimer’s is a completely different issue. But for these healthy individuals, it has to be said that the weight of the evidence is against working memory training producing more general cognitive improvement. Nevertheless, I think it’s probably an important part of a cognitive training program — as long as the emphasis is on part.

Melby-Lervåg, M., & Hulme, C. (2012). Is Working Memory Training Effective? A Meta-Analytic Review. Developmental psychology. doi:10.1037/a0028228
Full text available at http://www.apa.org/pubs/journals/releases/dev-ofp-melby-lervag.pdf

[3012] Redick, T. S., Shipstead Z., Harrison T. L., Hicks K. L., Fried D. E., Hambrick D. Z., et al.
(2012).  No Evidence of Intelligence Improvement After Working Memory Training: A Randomized, Placebo-Controlled Study..
Journal of Experimental Psychology: General.
Full text available at http://psychology.gatech.edu/renglelab/publications/2012/RedicketalJEPG.pdf
 

I’ve talked before about the benefits of music lessons for children — most recently, for example, how music-based training 'cartoons' improved preschoolers’ verbal IQ. Now a new study extends the findings to infants.

In the study, 6-month-old babies were randomly assigned to six months of one of two types of weekly music class. The classes lasted an hour and involved either an active or passive approach.

In the active classes, parents and infants worked together to learn to play percussion instruments and sing lullabies and action songs. The classes emphasized musical expression, listening in order to play or sing at the right time, repetition, and developing parents’ awareness of their babies’ responses. There was also a CD that they were encouraged to play at home.

In the passive classes, parents and infants listened to CDs from the Baby Einstein series while playing and interacting at art, book, ball, block, and stacking cup play stations. Parents were encouraged to take home different CDs from the collection each week.

At the end of the program, those babies attending the active classes showed an earlier sensitive to pitch. Unlike infants from the passive classes, they preferred to listen to a piano piece played in key rather than one that included notes played out of key (you can hear the two versions at http://www.psychology.mcmaster.ca/ljt/stimuli.htm). Their brains also showed larger and/or earlier responses to musical tones.

On the cognitive side, babies from the active classes also showed better early communication skills, like pointing at objects that are out of reach, or waving goodbye. Socially, these babies also smiled more, were easier to soothe, and showed less distress when things were unfamiliar or didn't go their way. It is presumed that these social skills are due to the development of better social interaction between parent and child.

The classes were run at two centers — one in a lower socioeconomic area, and one in a middle-class area. The teachers of the classes were unaware of the nature of the experiment. Before the classes began, all the babies had shown similar communication and social development and none had previously participated in other baby music classes. There was no interaction between socioeconomic status and intervention, and the results from both were then analyzed together. There were 38 families (out of an initial 49 at the beginning) who were still attending regularly at the end of the program, and 34 of these (of whom 16 were from the lower SES centre) completed the testing.

The exciting question is of course what long-term effects this ‘head-start’ will have on cognitive and social development. I hope the researchers will follow this up.

Previous research has been equivocal about whether cognitive training helps cognitively healthy older adults. One recent review concluded that cognitive training could help slow age-related decline in a range of cognitive tasks; another found no evidence that such training helps slow or prevent the development of Alzheimer’s in healthy older adults. Most of the studies reviewed looked at single-domain training only: memory, reasoning, processing speed, reading, solving arithmetic problems, or strategy training (1). As we know from other studies, training in specific tasks is undeniably helpful for improving your performance at those specific tasks. However, there is little evidence for wider transfer. There have been few studies employing multi-domain training, although two such have found positive benefits.

In a new Chinese study, 270 healthy older adults (65-75) were randomly assigned to one of three groups. In the two experimental groups, participants were given one-hour training sessions twice a week for 12 weeks. Training took place in small groups of around 15. The first 15 minutes of each hour involved a lecture focusing on diseases common in older adults. The next 30 minutes were spent in instruction in one specific technique and how to use it in real life. The last 15 minutes were used to consolidate the skills by solving real-life problems.

One group were trained using a multi-domain approach, involving memory, reasoning, problem solving, map reading, handicrafts, health education and exercise. The other group trained on reasoning only (involving the towers of Hanoi, numerical reasoning, Raven Progressive Matrices, and verbal reasoning). Homework was assigned. Six months after training, three booster sessions (a month apart) were offered to 60% of the participants. The third group (the control) was put on a waiting list. All three groups attended a lecture on aspects of healthy living every two months.

All participants were given cognitive tests before training and after training, and again after 6 months, and after one year. Cognitive function was assessed using the Stroop Test, the Trail Making test, the Visual Reasoning test, and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS, Form A).

Both the multi-domain and single-domain cognitive training produced significant improvement in cognitive scores (the former in RBANS, visual reasoning, and immediate and delayed memory; the latter in RBANS, visual reasoning, word interference, and visuospatial/constructional score), although single-domain training produced less durable benefits (after a year, the multi-domain group still showed the benefit in RBANS, delayed memory and visual reasoning, while the single-domain group only showed benefits in word interference). Booster training also produced benefits, consolidating training in reasoning, visuospatial/constructional abilities and faster processing.

Reasoning ability seemed particularly responsive to training. Although it would be reasonable to assume that single-domain training, which focused on reasoning, would produce greater improvement than multi-domain training in this specific area, there was in fact no difference between the two groups right after training or at six months. And at 12 months, the multi-domain group was clearly superior.

In sum, the study provides evidence that cognitive training helps prevent cognitive decline in healthy older people, that specific training can generalize to other tasks, but that programs that involve several cognitive domains produce more lasting benefits.

While smartphones and other digital assistants have been found to help people with mild memory impairment, their use by those with greater impairment has been less successful. However, a training program developed at the Baycrest Centre for Geriatric Care has been using the power of implicit memory to help impaired individuals master new skills.

The study involved 10 outpatients, aged 18 to 55 (average age 44), who had moderate-to-severe memory impairment, the result of non-neurodegenerative conditions including ruptured aneurysm, stroke, tumor, epilepsy, closed-head injury, or anoxia after a heart attack. They all reported difficulty in day-to-day functioning.

Participants were trained in the basic functions of either a smartphone or another personal digital assistant (PDA) device, using an errorless training method that tapped into their preserved implicit /procedural memory. In this method, cues are progressively faded in such a way as to ensure there is enough information to prompt the correct response. The fading of the cues was based on the trainer’s observation of the patient’s behavior.

Participants were given several one-hour training sessions to learn calendaring skills such as inputting appointments and reminders. Each application was broken down into its component steps, and each step was given its own score in terms of how much support was needed. Support could either comprise a full explanation and demonstration; full explanation plus pointing to the next step; simply pointing to the next step; simply confirming a correct query; no support. The hour-long sessions occurred twice a week (with one exception, who only received one session a week). Training continued until the individual reached criterion-level performance (98% correct over a single session). On average, this took about 8 sessions, but as a general rule, those with relatively focal impairment tended to be substantially quicker than those with more extensive cognitive impairment.

After this first training phase, participants took their devices home, where they extended their use of the device through new applications mastered using the same protocol. These new tasks were carefully scaffolded to enable progressively more difficult tasks to be learned.

To assess performance, participants were given a schedule of 10 phone calls to complete over a two-week period at different times of the day. Additionally, family members kept a log of whether real-life tasks were successfully completed or not, and both participants and family members completed several questionnaires: one rating a list of common memory mistakes on a frequency-of-occurrence scale, another measuring confidence in dealing with various memory-demanding scenarios, and a third examining the participant's ability to use the device.

All 10 individuals showed improvement in day-to-day memory functioning after taking the training, and this improvement continued when the patients were followed up three to eight months later. Specifically, prospective memory (memory for future events) improved, and patient confidence in dealing with memory-demanding situations increased. Some patients also reported broadening their use of their device to include non-prospective memory tasks (e.g. entering names and/or photos of new acquaintances, or entering details of conversations).

It should be noted that these patients were some time past their injury, which was on average some 3 ½ years earlier (ranging from 10 months to over 25 years). Accordingly, they had all been through standard rehabilitation training, and already used many memory strategies. Questioning about strategy use prior to the training revealed that six participants used more memory strategies than they had before their injury, three hadn’t changed their strategy use, and one used fewer. Strategies included: calendars, lists, reminders from others, notebooks, day planner, placing items in prominent places, writing a note, relying on routines, alarms, organizing information, saying something out loud in order to remember it, mental elaboration, concentrating hard, mental retracing, computer software, spaced repetition, creating acronyms, alphabetic retrieval search.

The purpose of this small study, which built on an earlier study involving only two patients, was to demonstrate the generalizability of the training method to a larger number of individuals with moderate-to-severe memory impairment. Hopefully, it will also reassure such individuals, who tend not to use electronic memory aids, that these are a useful tool that they can, with the right training, learn to use successfully.

A number of studies have found evidence that older adults can benefit from cognitive training. However, neural plasticity is thought to decline with age, and because of this, it’s thought that the younger-old, and/or the higher-functioning, may benefit more than the older-old, or the lower-functioning. On the other hand, because their performance may already be as good as it can be, higher-functioning seniors may be less likely to benefit. You can find evidence for both of these views.

In a new study, 19 of 39 older adults (aged 60-77) were given training in a multiplayer online video game called World of Warcraft (the other 20 formed a control group). This game was chosen because it involves multitasking and switching between various cognitive abilities. It was theorized that the demands of the game would improve both spatial orientation and attentional control, and that the multiple tasks might produce more improvement in those with lower initial ability compared to those with higher ability.

WoW participants were given a 2-hour training session, involving a 1-hour lecture and demonstration, and one hour of practice. They were then expected to play the game at home for around 14 hours over the next two weeks. There was no intervention for the control group. All participants were given several cognitive tests at the beginning and end of the two week period: Mental Rotation Test; Stroop Test; Object Perspective Test; Progressive Matrices; Shipley Vocabulary Test; Everyday Cognition Battery; Digit Symbol Substitution Test.

As a group, the WoW group improved significantly more on the Stroop test (a measure of attentional control) compared to the control group. There was no change in the other tests. However, those in the WoW group who had performed more poorly on the Object Perspective Test (measuring spatial orientation) improved significantly. Similarly, on the Mental Rotation Test, ECB, and Progressive Matrices, those who performed more poorly at the beginning tended to improve after two weeks of training. There was no change on the Digit Symbol test.

The finding that only those whose performance was initially poor benefited from cognitive training is consistent with other studies suggesting that training only benefits those who are operating below par. This is not really surprising, but there are a few points that should be made.

First of all, it should be noted that this was a group of relatively high-functioning young-old adults — poorer performance in this case could be (relatively) better performance in another context. What it comes down to is whether you are operating at a level below which you are capable of — and this applies broadly, for example, experiments show that spatial training benefits females but not males (because males tend to already have practiced enough).

Given that, in expertise research, training has an on-going, apparently limitless, effect on performance, it seems likely that the limited benefits shown in this and other studies is because of the extremely limited scope of the training. Fourteen hours is not enough to improve people who are already performing adequately — but that doesn’t mean that they wouldn’t improve with more hours. I have yet to see any interventions with older adults that give them the amount of cognitive training you would expect them to need to achieve some level of mastery.

My third and final point is the specific nature of the improvements. This has also been shown in other studies, and sometimes appears quite arbitrary — for example, one 3-D puzzle game apparently improved mental rotation, while a different 3-D puzzle game had no effect. The point being that we still don’t understand the precise attributes needed to improve different skills (although the researchers advocate the use of a tool called cognitive task analysis for revealing the underlying qualities of an activity) — but we do understand that it is a matter of precise attributes, which is definitely a step in the right direction.

The main thing, then, that you should take away from this is the idea that different activities involve specific cognitive tasks, and these, and only these, will be the ones that benefit from practicing the activities. You therefore need to think about what tasks you want to improve before deciding on the activities to practice.

I talked recently about how the well-established difference in spatial ability between men and women apparently has a lot to do with confidence. I also mentioned in passing that previous research has shown that training can close the gender gap. A recent study suggests that this training may not have to be specific to spatial skills.

In the German study, 120 students were given a processing speed test and a standard mental rotation test. The students were evenly divided into three groups: musicians, athletes, and education students who didn’t participate in either sports or music.

While the expected gender gap was found among the education students, the gap was smaller among the sports students, and non-existent in the music students.

Among the education students, men got twice as many rotation problems correct as women. Among the sports students, both men and women did better than their peers in education, but since they were both about equally advantaged, a gender gap was still maintained. However, among the musicians, it was only women who benefited, bringing them up to the level of the men.

Thus, for males, athletes did best on mental rotation; for females, musicians did best.

Although it may be that those who went into music or sports had relevant “natural abilities”, the amount of training in sports/music did have a significant effect. Indeed, analysis found that the advantage of sports and music students disappeared when hours of practice and years of practicing were included.

Interestingly, too, there was an effect of processing speed. Although overall the three groups didn’t differ in processing speed, male musicians had a lower processing speed than female musicians, or male athletes (neither of which groups were significantly different from each other).

It is intriguing that music training should only benefit females’ spatial abilities. However, I’m reminded that in research showing how a few hours of video game training can help females close the gender gap, females benefited from the training far more than men. The obvious conclusion is that the males already had sufficient experience, and a few more hours were neither here nor there. Perhaps the question should rather be: why does sports practice benefit males’ spatial skills? A question that seems to point to the benefits for processing speed, but then we have to ask why sports didn’t have the same effect on women. One possible answer here is that the women had engaged in sports for a significantly shorter time (an average of 10.6 years vs 17.55), meaning that the males tended to begin their sports training at a much younger age. There was no such difference among the musicians.

(For more on spatial memory, see the aggregated news reports)

Pietsch, S., & Jansen, P. (2012). Different mental rotation performance in students of music, sport and education. Learning and Individual Differences, 22(1), 159-163. Elsevier Inc. doi:10.1016/j.lindif.2011.11.012

I always like gesture studies. I think I’m probably right in saying that they started with language learning. Way back in 1980 it was shown that acting out action phrases meant they were remembered better than if the phrases had been only heard or read (the “enactment effect”). Enacted items, it turned out, “popped out” effortlessly in free recall tests — in other words, enactment had made the phrases highly accessible. Subsequent research found that this effect occurred both for both older and younger adults, and in immediate and delayed recall tests — suggesting not only that such items are more accessible but that forgetting is slower.

Following these demonstrations, there have been a few studies that have specifically looked at the effect of gestures on learning foreign languages, which have confirmed the benefits of gestures. But there are various confounding factors that are hard to remove when using natural languages, which is why the present researchers have developed an artificial language (“Vimmi”) to use in their research. In their first study, as in most other studies, the words and phrases used related to actions. In a new study, the findings were extended to more abstract vocabulary.

In this study, 20 German-speakers participated in a six-day language class to study Vimmi. The training material included 32 sentences, each containing a subject, verb, adverb, and object. While the subject nouns were concrete agents (e.g., musician, director), the other words were all abstract. Here’s a couple of sample sentences (translated, obviously): (The) designer frequently shapes (the) style. (The) pilot really enjoys (the) view. The length of the words was controlled: nouns all had 3 syllables; verbs and adverbs all had two.

For 16 of the sentences, participants saw the word in Vimmi and heard it. The translation of the word appeared on the screen fractionally later, while at the same time a video appeared in which woman performed the gesture relating to the word. The audio of the word was replayed, and participants were cued to imitate the gesture as they repeated the word. For the other 16 sentences, a video with a still image of the actress appeared, and the participants were simply cued to repeat the word when the audio was replayed.

While many of the words used gestures similar to their meaning (such as a cutting gesture for the word “cut”), the researchers found that the use of any gesture made a difference as long as it was unique and connected to a specific word. For example, the abstract word “rather” does not have an obvious gesture that would go with it. However, a gesture attached to this word also worked.

Each daily session lasted three hours. From day 2, sessions began with a free recall and a cued recall test. In the free recall test, participants were asked to write as many items as possible in both German and Vimmi. Items had to be perfectly correct to be counted. From day 4, participants were also required to produce new sentences with the words they had learned.

Right from the beginning, free recall of items which had been enacted was superior to those which hadn’t been — in German. However, in Vimmi, significant benefits from enactment occurred only from day 3. The main problem here was not forgetting the items, but correctly spelling them. In the cued recall test (translating from Vimmi to German, or German to Vimmi), again, the superiority of the enactment condition only showed up from day 3.

Perhaps the most interesting result came from the written production test. Here, people reproduced the same number of sentences they had learned on each of the three days of the test, and although enacted words were remembered at a higher rate, that rate didn’t alter, and didn’t reach significance. However, the production of new sentences improved each day, and the benefits of enactment increased each day. These benefits were significant from day 5.

The main question, however, was whether the benefits of enactment depended on word category. As expected, concrete nouns were remembered than verbs, followed by abstract nouns, and finally adverbs. When all the tests were lumped together, there was a significant benefit of enactment for all types of word. However, the situation became a little more nuanced when the data was separately analyzed.

In free recall, for Vimmi, enactment was only of significant benefit for concrete nouns and verbs. In cued recall, for translating German into Vimmi, the enactment benefit was significant for all except concrete nouns (I’m guessing concrete nouns have enough ‘natural’ power not to need gestures in this situation). For translating Vimmi into German, the benefit was only significant for verbs and abstract nouns. In new sentence production, interestingly, participants used significantly more items of all four categories if they had been enacted. This is perhaps the best evidence that enactment makes items more accessible in memory.

What all this suggests is that acting out new words helps you learn them, but some types of words may benefit more from this strategy than others. But I think we need more research before being sure about such subtleties. The pattern of results make it clear that we really need longer training, and longer delays, to get a better picture of the most effective way to use this strategy.

For example, it may be that adverbs, although they showed the most inconsistent benefits, are potentially the category that stands to gain the most from this strategy — because they are the hardest type of word to remember. Because any embodiment of such an abstract adverb must be arbitrary — symbolic rather than representational — it naturally is going to be harder to learn (yes, some adverbs could be represented, but the ones used in this study, and the ones I am talking about, are of the “rather”, “really”, “otherwise” ilk). But if you persist in learning the association between concept and gesture, you may derive greater benefit from enactment than you would from easier words, which need less help.

Here’s a practical discussion of all this from a language teacher’s perspective.

[2688] Macedonia, M., & Knösche T. R.
(2011).  Body in Mind: How Gestures Empower Foreign Language Learning.
Mind, Brain, and Education. 5(4), 196 - 211.

I’ve spoken before about the association between hearing loss in old age and dementia risk. Although we don’t currently understand that association, it may be that preventing hearing loss also helps prevent cognitive decline and dementia. I have previously reported on how music training in childhood can help older adults’ ability to hear speech in a noisy environment. A new study adds to this evidence.

The study looked at a specific aspect of understanding speech: auditory brainstem timing. Aging disrupts this timing, degrading the ability to precisely encode sound.

In this study, automatic brain responses to speech sounds were measured in 87 younger and older normal-hearing adults as they watched a captioned video. It was found that older adults who had begun musical training before age 9 and engaged consistently in musical activities through their lives (“musicians”) not only significantly outperformed older adults who had no more than three years of musical training (“non-musicians”), but encoded the sounds as quickly and accurately as the younger non-musicians.

The researchers qualify this finding by saying that it shows only that musical experience selectively affects the timing of sound elements that are important in distinguishing one consonant from another, not necessarily all sound elements. However, it seems probable that it extends more widely, and in any case the ability to understand speech is crucial to social interaction, which may well underlie at least part of the association between hearing loss and dementia.

The burning question for many will be whether the benefits of music training can be accrued later in life. We will have to wait for more research to answer that, but, as music training and enjoyment fit the definition of ‘mentally stimulating activities’, this certainly adds another reason to pursue such a course.

The olfactory bulb is in the oldest part of our brain. It connects directly to the amygdala (our ‘emotion center’) and our prefrontal cortex, giving smells a more direct pathway to memory than our other senses. But the olfactory bulb is only part of the system processing smells. It projects to several other regions, all of which are together called the primary olfactory cortex, and of which the most prominent member is the piriform cortex. More recently, however, it has been suggested that it would be more useful to regard the olfactory bulb as the primary olfactory cortex (primary in the sense that it is first), while the piriform cortex should be regarded as association cortex — meaning that it integrates sensory information with ‘higher-order’ (cognitive, contextual, and behavioral) information.

Testing this hypothesis, a new rat study has found that, when rats were given training to distinguish various odors, each smell produced a different pattern of electrical activity in the olfactory bulb. However, only those smells that the rat could distinguish from others were reflected in distinct patterns of brain activity in the anterior piriform cortex, while smells that the rat couldn’t differentiate produced identical brain activity patterns there. Interestingly, the smells that the rats could easily distinguish were ones in which one of the ten components in the target odor had been replaced with a new component. The smells they found difficult to distinguish were those in which a component had simply been deleted.

When a new group of rats was given additional training (8 days vs the 2 days given the original group), they eventually learned to discriminate between the odors the first animals couldn’t distinguish, and this was reflected in distinct patterns of brain activity in the anterior piriform cortex. When a third group were taught to ignore the difference between odors the first rats could readily distinguish, they became unable to tell the odors apart, and similar patterns of brain activity were produced in the piriform cortex.

The effects of training were also quite stable — they were still evident after two weeks.

These findings support the idea of the piriform cortex as association cortex. It is here that experience modified neuronal activity. In the olfactory bulb, where all the various odors were reflected in different patterns of activity right from the beginning (meaning that this part of the brain could discriminate between odors that the rat itself couldn’t distinguish), training made no difference to the patterns of activity.

Having said that, it should be noted that this is not entirely consistent with previous research. Several studies have found that odor training produces changes in the representations in the olfactory bulb. The difference may lie in the method of neural recording.

How far does this generalize to the human brain? Human studies have suggested that odors are represented in the posterior piriform cortex rather than the anterior piriform cortex. They have also suggested that the anterior piriform cortex is involved in expectations relating to the smells, rather than representing the smells themselves. Whether these differences reflect species differences, task differences, or methodological differences, remains to be seen.

But whether or not the same exact regions are involved, there are practical implications we can consider. The findings do suggest that one road to olfactory impairment is through neglect — if you learn to ignore differences between smells, you will become increasingly less able to do so. An impaired sense of smell has been found in Alzheimer’s disease, Parkinson's disease, schizophrenia, and even normal aging. While some of that may well reflect impairment earlier in the perception process, some of it may reflect the consequences of neglect. The burning question is, then, would it be possible to restore smell function through odor training?

I’d really like to see this study replicated with old rats.

The evidence that adult brains could grow new neurons was a game-changer, and has spawned all manner of products to try and stimulate such neurogenesis, to help fight back against age-related cognitive decline and even dementia. An important study in the evidence for the role of experience and training in growing new neurons was Maguire’s celebrated study of London taxi drivers, back in 2000.

The small study, involving 16 male, right-handed taxi drivers with an average experience of 14.3 years (range 1.5 to 42 years), found that the taxi drivers had significantly more grey matter (neurons) in the posterior hippocampus than matched controls, while the controls showed relatively more grey matter in the anterior hippocampus. Overall, these balanced out, so that the volume of the hippocampus as a whole wasn’t different for the two groups. The volume in the right posterior hippocampus correlated with the amount of experience the driver had (the correlation remained after age was accounted for).

The posterior hippocampus is preferentially involved in spatial navigation. The fact that only the right posterior hippocampus showed an experience-linked increase suggests that the right and left posterior hippocampi are involved in spatial navigation in different ways. The decrease in anterior volume suggests that the need to store increasingly detailed spatial maps brings about a reorganization of the hippocampus.

But (although the experience-related correlation is certainly indicative) it could be that those who manage to become licensed taxi drivers in London are those who have some innate advantage, evidenced in a more developed posterior hippocampus. Only around half of those who go through the strenuous training program succeed in qualifying — London taxi drivers are unique in the world for being required to pass through a lengthy training period and pass stringent exams, demonstrating their knowledge of London’s 25,000 streets and their idiosyncratic layout, plus 20,000 landmarks.

In this new study, Maguire and her colleague made a more direct test of this question. 79 trainee taxi drivers and 31 controls took cognitive tests and had their brains scanned at two time points: at the beginning of training, and 3-4 years later. Of the 79 would-be taxi drivers, only 39 qualified, giving the researchers three groups to compare.

There were no differences in cognitive performance or brain scans between the three groups at time 1 (before training). At time 2 however, when the trainees had either passed the test or failed to acquire the Knowledge, those trainees that qualified had significantly more gray matter in the posterior hippocampus than they had had previously. There was no change in those who failed to qualify or in the controls.

Unsurprisingly, both qualified and non-qualified trainees were significantly better at judging the spatial relations between London landmarks than the control group. However, qualified trainees – but not the trainees who failed to qualify – were worse than the other groups at recalling a complex visual figure after 30 minutes (see here for an example of such a figure). Such a finding replicates previous findings of London taxi drivers. In other words, their improvement in spatial memory as it pertains to London seems to have come at a cost.

Interestingly, there was no detectable difference in the structure of the anterior hippocampus, suggesting that these changes develop later, in response to changes in the posterior hippocampus. However, the poorer performance on the complex figure test may be an early sign of changes in the anterior hippocampus that are not yet measurable in a MRI.

The ‘Knowledge’, as it is known, provides a lovely real-world example of expertise. Unlike most other examples of expertise development (e.g. music, chess), it is largely unaffected by childhood experience (there may be some London taxi drivers who began deliberately working on their knowledge of London streets in childhood, but it is surely not common!); it is developed through a training program over a limited time period common to all participants; and its participants are of average IQ and education (average school-leaving age was around 16.7 years for all groups; average verbal IQ was around or just below 100).

So what underlies this development of the posterior hippocampus? If the qualified and non-qualified trainees were comparable in education and IQ, what determined whether a trainee would ‘build up’ his hippocampus and pass the exams? The obvious answer is hard work / dedication, and this is borne out by the fact that, although the two groups were similar in the length of their training period, those who qualified spent significantly more time training every week (an average of 34.5 hours a week vs 16.7 hours). Those who qualified also attended far more tests (an average of 15.6 vs 2.6).

While neurogenesis is probably involved in this growth within the posterior hippocampus, it is also possible that growth reflects increases in the number of connections, or in the number of glia. Most probably (I think), all are involved.

There are two important points to take away from this study. One is its clear demonstration that training can produce measurable changes in a brain region. The other is the indication that this development may come at the expense of other regions (and functions).

Music-based training 'cartoons' improved preschoolers’ verbal IQ

A study in which 48 preschoolers (aged 4-6) participated in computer-based, cognitive training programs that were projected on a classroom wall and featured colorful, animated cartoon characters delivering the lessons, has found that 90% of those who received music-based training significantly improved their scores on a test of verbal intelligence, while those who received visual art-based training did not.

The music-based training involved a combination of motor, perceptual and cognitive tasks, and included training on rhythm, pitch, melody, voice and basic musical concepts. Visual art training emphasized the development of visuo-spatial skills relating to concepts such as shape, color, line, dimension and perspective. Each group received two one-hour training sessions each day in classroom, over four weeks.

Children’s abilities and brain function were tested before the training and five to 20 days after the end of the programs. While there were no significant changes, in the brain or in performance, in the children who participated in the visual art training, nearly all of those who took the music-based training showed large improvements on a measure of vocabulary knowledge, as well as increased accuracy and reaction time. These correlated with changes in brain function.

The findings add to the growing evidence for the benefits of music training for intellectual development, especially in language.

Musical aptitude relates to reading ability through sensitivity to sound patterns

Another new study points to one reason for the correlation between music training and language acquisition. In the study, 42 children (aged 8-13) were tested on their ability to read and recognize words, as well as their auditory working memory (remembering a sequence of numbers and then being able to quote them in reverse), and musical aptitude (both melody and rhythm). Brain activity was also measured.

It turned out that both music aptitude and literacy were related to the brain’s response to acoustic regularities in speech, as well as auditory working memory and attention. Compared to good readers, poor readers had reduced activity in the auditory brainstem to rhythmic rather than random sounds. Responsiveness to acoustic regularities correlated with both reading ability and musical aptitude. Musical ability (largely driven by performance in rhythm) was also related to reading ability, and auditory working memory to both of these.

It was calculated that music skill, through the functions it shares with reading (brainstem responsiveness to auditory regularities and auditory working memory) accounts for 38% of the difference in reading ability between children.

These findings are consistent with previous findings that auditory working memory is an important component of child literacy, and that positive correlations exist between auditory working memory and musical skill.

Basically what this is saying, is that the auditory brainstem (a subcortical region — that is, below the cerebral cortex, where our ‘higher-order’ functions are carried out) is boosting the experience of predictable speech in better readers. This fine-tuning may reflect stronger top-down control in those with better musical ability and reading skills. While there may be some genetic contribution, previous research makes it clear that musicians’ increased sensitivity to sound patterns is at least partly due to training.

In other words, giving young children music training is a good first step to literacy.

The children were rated as good readers if they scored 110 or above on the Test of Word Reading Efficiency, and poor readers if they scored 90 or below. There were 8 good readers and 21 poor readers. Those 13 who scored in the middle were excluded from group analyses. Good and poor readers didn’t differ in age, gender, maternal education, years of musical training, extent of extracurricular activity, or nonverbal IQ. Only 6 of the 42 children had had at least a year of musical training (of which one was a poor reader, three were average, and two were good).

Auditory brainstem responses were gathered to the speech sound /da/, which was either presented with 100% probability, or randomly interspersed with seven other speech sounds. The children heard these sounds through an earpiece in the right ear, while they listened to the soundtrack of a chosen video with the other ear.

[2603] Moreno, S., Bialystok E., Barac R., Schellenberg E. Glenn, Cepeda N. J., & Chau T.
(2011).  Short-Term Music Training Enhances Verbal Intelligence and Executive Function.
Psychological Science. 22(11), 1425 - 1433.

Strait, Dana L, Jane Hornickel, and Nina Kraus. “Subcortical processing of speech regularities underlies reading and music aptitude in children.” Behavioral and brain functions : BBF 7, no. 1 (October 17, 2011): 44. http://www.ncbi.nlm.nih.gov/pubmed/22005291.

Full text is available at http://www.behavioralandbrainfunctions.com/content/pdf/1744-9081-7-44.pd...

In a study involving 115 seniors (average age 81), those who participated in a six-week, 12-session memory training program significantly improved their verbal memory. 15-20 seniors participated in each hour-long class, which included explanations of how memory works, quick strategies for remembering names, faces and numbers, basic memory strategies such as linking ideas and creating visual images, and information on a healthy lifestyle for protecting and maintaining memory.

Most of the study participants were women, Caucasian and had attained a college degree or higher level of education.

[2491] Miller, K. J., Siddarth P., Gaines J. M., Parrish J. M., Ercoli L. M., Marx K., et al.
(2011).  The Memory Fitness Program.
American Journal of Geriatric Psychiatry. 1 - 1.

Following a 1994 study that found that errorless learning was better than trial-and-error learning for amnesic patients and older adults, errorless learning has been widely adopted in the rehabilitation industry. Errorless learning involves being told the answer without repeatedly trying to answer the question and perhaps making mistakes. For example, in the 1994 study, participants in the trial-and-error condition could produce up to three errors in answer to the question “I am thinking of a word that begins with QU”, before being told the answer was QUOTE; in contrast, participants in the errorless condition were simply told “I am thinking of a word that begins with QU and it is ‘QUOTE’.”

In a way, it is surprising that errorless learning should be better, given that trial-and-error produces much deeper and richer encoding, and a number of studies with young adults have indeed found an advantage for making errors. Moreover, it’s well established that retrieving an item leads to better learning than passively studying it, even when you retrieve the wrong item. This testing effect has also been found in older adults.

In another way, the finding is not surprising at all, because clearly the trial-and-error condition offers many opportunities for confusion. You remember that QUEEN was mentioned, for example, but you don’t remember whether it was a right or wrong answer. Source memory, as I’ve often mentioned, is particularly affected by age.

So there are good theoretical reasons for both positions regarding the value of mistakes, and there’s experimental evidence for both. Clearly it’s a matter of circumstance. One possible factor influencing the benefit or otherwise of error concerns the type of processing. Those studies that have found a benefit have generally involved conceptual associations (e.g. What’s Canada’s capital? Toronto? No, Ottawa). It may be that errors are helpful to the extent that they act as retrieval cues, and evoke a network of related concepts. Those studies that have found errors harm learning have generally involved perceptual associations, such as word stems and word fragments (e.g., QU? QUeen? No, QUote). These errors are arbitrary, produce interference, and don’t provide useful retrieval cues.

So this new study tested the idea that producing errors conceptually associated with targets would boost memory for the encoding context in which information was studied, especially for older adults who do not spontaneously elaborate on targets at encoding.

In the first experiment, 33 young (average age 21) and 31 older adults (average age 72) were shown 90 nouns presented in three different, intermixed conditions. In the read condition (designed to provide a baseline), participants read aloud the noun fragment presented without a semantic category (e.g., p­_g). In the errorless condition, the semantic category was presented with the target word fragment (e.g. a farm animal  p­_g), and the participants read aloud the category and their answer. The category and target were then displayed. In the trial-and-error condition, the category was presented and participants were encouraged to make two guesses before being shown the target fragment together with the category. The researchers changed the target if it was guessed. Participants were then tested using a list of 70 words, of which 10 came from each of the study conditions, 10 were new unrelated words, and 30 were nontarget exemplars from the TEL categories. Those that the subject had guessed were labeled as learning errors; those that hadn’t come up were labeled as related lures. In addition to an overall recognition test (press “yes” to any word you’ve studied and “no” to any new word), there were two tests that required participants to endorse items that were studied in the TEL condition and reject those studied in the EL condition, and vice versa.

The young adults did better than the older on every test. TEL produced better learning than EL, and both produced better learning than the read condition (as expected). The benefit of TEL was greater for older adults. This is in keeping with the idea that generating exemplars of a semantic category, as occurs in trial-and-error learning, helps produce a richer, more elaborated code, and that this is of greater to older adults, who are less inclined to do this without encouragement.

There was a downside, however. Older adults were also more prone to falsely endorsing prior learning errors or semantically-related lures. It’s worth noting that both groups were more likely to falsely endorse learning errors than related lures.

But the main goal of this first experiment was to disentangle the contributions of recollection and familiarity to the two types of learning. It turns out that there was no difference between young and older adults in terms of familiarity; the difference in performance between the two groups stemmed from recollection. Recollection was a problem for older adults in the errorless condition, but not in the trial-and-error condition (where the recollective component of their performance matched that of young adults). This deficit is clearly closely related to age-related deficits in source memory.

It was also found that familiarity was marginally more important in the errorless condition than the trial-and-error condition. This is consistent with the idea that targets learned without errors acquire greater fluency than those learned with errors (with the downside that they don’t pick up those contextual details that making errors can provide).

In the second experiment, 15 young and 15 older adults carried out much the same procedure, except that during the recognition test they were also required to mention the context in which the words were learned was tested (that is, were the words learned through trial-and-error or not).

Once again, trial-and-error learning was associated with better source memory relative to errorless learning, particularly for the older adults.

These results support the hypothesis that trial-and-error learning is more beneficial than errorless learning for older adults when the trials encourage semantic elaboration. But another factor may also be involved. Unlike other errorless studies, participants were required to attend to errors as well as targets. Explicit attention to errors may help protect against interference.

In a similar way, a recent study involving young adults found that feedback given in increments (thus producing errors) is more effective than feedback given all at once in full. Clearly what we want is to find that balance point, where elaborative benefits are maximized and interference is minimized.

[2496] Cyr, A-A., & Anderson N. D.
(2011).  Trial-and-error learning improves source memory among young and older adults.
Psychology and Aging. No Pagination Specified - No Pagination Specified.

In the study, two rhesus monkeys were given a standard human test of working memory capacity: an array of colored squares, varying from two to five squares, was shown for 800 msec on a screen. After a delay, varying from 800 to 1000 msec, a second array was presented. This array was identical to the first except for a change in color of one item. The monkey was rewarded if its eyes went directly to this changed square (an infra-red eye-tracking system was used to determine this). During all this, activity from single neurons in the lateral prefrontal cortex and the lateral intraparietal area — areas critical for short-term memory and implicated in human capacity limitations — was recorded.

As with humans, the more squares in the array, the worse the performance (from 85% correct for two squares to 66.5% for 5). Their working memory capacity was calculated at 3.88 objects — i.e. the same as that of humans.

That in itself is interesting, speaking as it does to the question of how human intelligence differs from other animals. But the real point of the exercise was to watch what is happening at the single neuron level. And here a surprise occurred.

That total capacity of around 4 items was composed of two independent, smaller capacities in the right and left halves of the visual space. What matters is how many objects are in the hemifield an eye is covering. Each hemifield can only handle two objects. Thus, if the left side of the visual space contains three items, and the right side only one, information about the three items from the left side will be degraded. If the left side contains four items and the right side two, those two on the right side will be fine, but information from the four items on the left will be degraded.

Notice that the effect of more items than two in a hemifield is to decrease the total information from all the items in the hemifield — not to simply lose the additional items.

The behavioral evidence correlated with brain activity, with object information in LPFC neurons decreasing with increasing number of items in the same hemifield, but not the opposite hemifield, and the same for the intraparietal neurons (the latter are active during the delay; the former during the presentation).

The findings resolve a long-standing debate: does working memory function like slots, which we fill one by one with items until all are full, or as a pool that fills with information about each object, with some information being lost as the number of items increases? And now we know why there is evidence for both views, because both contain truth. Each hemisphere might be considered a slot, but each slot is a pool.

Another long-standing question is whether the capacity limit is a failure of perception or  memory. These findings indicate that the problem is one of perception. The neural recordings showed information about the objects being lost even as the monkeys were viewing them, not later as they were remembering what they had seen.

All of this is important theoretically, but there are also immediate practical applications. The work suggests that information should be presented in such a way that it’s spread across the visual space — for example, dashboard displays should spread the displays evenly on both sides of the visual field; medical monitors that currently have one column of information should balance it in right and left columns; security personnel should see displays scrolled vertically rather than horizontally; working memory training should present information in a way that trains each hemisphere separately. The researchers are forming collaborations to develop these ideas.

[2335] Buschman, T. J., Siegel M., Roy J. E., & Miller E. K.
(2011).  Neural substrates of cognitive capacity limitations.
Proceedings of the National Academy of Sciences.

In the first study, undergraduates studied English-Lithuanian word pairs, which were displayed on a screen one by one for 10 seconds. After studying the list, the students practiced retrieving the English words — they had 8 seconds to type in the English word as each Lithuanian word appeared, and those that were correct went to the end of the list to be asked again, and those wrong had to be restudied. Each item was pre-assigned a "criterion level" from one to five — the number of times it needed to be correctly recalled during practice.

In the first experiment, participants took one of four recall tests and one of three recognition tests after a 2-day delay. In the second experiment, in order to eliminate the reminder effect of the recall test, participants were only given a recognition test, after a 1-week delay.

Both experiments found that higher criterion levels led to better memory. More importantly, through the variety of tests, they showed that this occurred on all three kinds of memory tested: associative memory; target memory; cue memory. That is, practicing retrieval of the English word didn’t just improve memory for that word (the target), but also for the Lithuanian word (the cue), and the pairing (association).

While this may seem self-evident to some, it has been thought that only the information being retrieved is strengthened by retrieval practice. The results also emphasize that it is the correct retrieval of the information that improves memory, not the number of times the information is studied.

In a related study, 533 students learned conceptual material via retrieval practice across three experiments. Criterion levels varied from one to four correct retrievals in the initial session. Items also varied in how many subsequent sessions they were exposed to. In one to five testing/relearning sessions, the items were practiced until they were correctly recalled once. Memory was tested one to four months later.

It was found that the number of times items were correctly retrieved on the initial session had a strong initial effect, but this weakened as relearning increased. Relearning had pronounced effects on long-term retention with a relatively minimal cost in terms of additional practice trials.

On the basis of their findings, the researchers recommend that students practice recalling concepts to an initial criterion of three correct recalls and then relearn them three times at widely spaced intervals.

[2457] Vaughn, K. E., & Rawson K. A.
(2011).  Diagnosing Criterion-Level Effects on Memory.
Psychological Science.

Rawson, K.A. & Dunlosky, J. 2011. Optimizing schedules of retrieval practice for durable and efficient learning: How much is enough? Journal of Experimental Psychology: General, Jun 27, 2011, No Pagination Specified. doi: 10.1037/a0023956

Our common difficulty in recognizing faces that belong to races other than our own (or more specifically, those we have less experience of) is known as the Other Race Effect. Previous research has revealed that six-month-old babies show no signs of this bias, but by nine months, their ability to recognize faces is reduced to those races they see around them.

Now, an intriguing study has looked into whether infants can be trained in such a way that they can maintain the ability to process other-race faces. The study involved 32 six-month-old Caucasian infants, who were shown picture books that contained either Chinese (training group) or Caucasian (control group) faces. There were eight different books, each containing either six female faces or six male faces (with names). Parents were asked to present the pictures in the book to their child for 2–3 minutes every day for 1 week, then every other day for the next week, and then less frequently (approximately once every 6 days) following a fixed schedule of exposures during the 3-month period (equating to approximately 70 minutes of exposure overall).

When tested at nine months, there were significant differences between the two groups that indicated that the group who trained on the Chinese faces had maintained their ability to discriminate Chinese faces, while those who had trained on the Caucasian faces had lost it (specifically, they showed no preference for novel or familiar faces, treating them both the same).

It’s worth noting that the babies generalized from the training pictures, all of which showed the faces in the same “passport photo” type pose, to a different orientation (three-quarter pose) during test trials. This finding indicates that infants were actually learning the face, not simply an image.

A training program designed to help older adults with MCI develop memory strategies has found that their brains were still sufficiently flexible to learn new ways to compensate for impairment in some brain regions. The study involved 30 older adults, of whom 15 had MCI. Participants’ brains were scanned 6 weeks prior to memory training, one week prior to training and one week after training.

Before training, those with MCI showed less activity in brain regions associated with memory. After training they showed increased activation in these areas as well as in areas associated with language processing, spatial and object memory and skill learning. In particular, new activity in the right inferior parietal gyrus was associated with improvement on a memory task.

The findings demonstrate that even once diagnosed with MCI (a precursor to Alzheimer’s disease), brains can still be ‘rewired’ to use undamaged brain regions for tasks customarily done by now-damaged regions.

What makes one person so much better than another in picking up a new motor skill, like playing the piano or driving or typing? Brain imaging research has now revealed that one of the reasons appears to lie in the production of a brain chemical called GABA, which inhibits neurons from responding.

The responsiveness of some brains to a procedure that decreases GABA levels (tDCS) correlated both with greater brain activity in the motor cortex and with faster learning of a sequence of finger movements. Additionally, those with higher GABA concentrations at the beginning tended to have slower reaction times and less brain activation during learning.

It’s simplistic to say that low GABA is good, however! GABA is a vital chemical. Interestingly, though, low GABA has been associated with stress — and of course, stress is associated with faster reaction times and relaxation with slower ones. The point is, we need it in just the right levels, and what’s ‘right’ depends on context. Which brings us back to ‘responsiveness’ — more important than actual level, is the ability of your brain to alter how much GABA it produces, in particular places, at particular times.

However, baseline levels are important, especially where something has gone wrong. GABA levels can change after brain injury, and also may decline with age. The findings support the idea that treatments designed to influence GABA levels might improve learning. Indeed, tDCS is already in use as a tool for motor rehabilitation in stroke patients — now we have an idea why it works.

[2202] Stagg, C J., Bachtiar V., & Johansen-Berg H.
(2011).  The Role of GABA in Human Motor Learning.
Current Biology. 21(6), 480 - 484.

A working memory training program developed to help children with ADHD has been tested by 52 students, aged 7 to 17. Between a quarter and a third of the children showed significant improvement in inattention, overall number of ADHD symptoms, initiation, planning/organization, and working memory, according to parental ratings. While teacher ratings were positive, they did not quite reach significance. It is worth noting that this improvement was maintained at the four-month follow-up.

The children used the software in their homes, under the supervision of their parents and the researchers. The program includes a set of 25 exercises in a computer-game format that students had to complete within 5 to 6 weeks. For example, in one exercise a robot will speak numbers in a certain order, and the student has to click on the numbers the robot spoke, on the computer screen, in the opposite order. Each session is 30 to 40 minutes long, and the exercises become progressively harder as the students improve.

The software was developed by a Swedish company called Cogmed in conjunction with the Karolinska Institute. Earlier studies in Sweden have been promising, but this is the first study in the United States, and the first to include children on medication (60% of the participants).

In a study in which 14 volunteers were trained to recognize a faint pattern of bars on a computer screen that continuously decreased in faintness, the volunteers became able to recognize fainter and fainter patterns over some 24 days of training, and this correlated with stronger EEG signals from their brains as soon as the pattern flashed on the screen. The findings indicate that learning modified the very earliest stage of visual processing.

The findings could help shape training programs for people who must learn to detect subtle patterns quickly, such as doctors reading X-rays or air traffic controllers monitoring radars, and may also help improve training for adults with visual deficits such as lazy eye.

The findings are also noteworthy for showing that learning is not confined to ‘higher-order’ processes, but can occur at even the most basic, unconscious and automatic, level of processing.

Following a monkey study that found training in spatial memory could raise females to the level of males, and human studies suggesting the video games might help reduce gender differences in spatial processing (see below for these), a new study shows that training in spatial skills can eliminate the gender difference in young children. Spatial ability, along with verbal skills, is one of the two most-cited cognitive differences between the sexes, for the reason that these two appear to be the most robust.

This latest study involved 116 first graders, half of whom were put in a training program that focused on expanding working memory, perceiving spatial information as a whole rather than concentrating on details, and thinking about spatial geometric pictures from different points of view. The other children took part in a substitute training program, as a control group. Initial gender differences in spatial ability disappeared for those who had been in the spatial training group after only eight weekly sessions.

Previously:

A study of 90 adult rhesus monkeys found young-adult males had better spatial memory than females, but peaked early. By old age, male and female monkeys had about the same performance. This finding is consistent with reports suggesting that men show greater age-related cognitive decline relative to women. A second study of 22 rhesus monkeys showed that in young adulthood, simple spatial-memory training did not help males but dramatically helped females, raising their performance to the level of young-adult males and wiping out the gender gap.

Another study showing that expert video gamers have improved mental rotation skills, visual and spatial memory, and multitasking skills has led researchers to conclude that training with video games may serve to reduce gender differences in visual and spatial processing, and some of the cognitive declines that come with aging.

An intriguing new study has found that people are more likely to remember specific information if the pattern of activity in their brain is similar each time they study that information. The findings are said to challenge the long-held belief that people retain information more effectively when they study it several times under different contexts, thus giving their brains multiple cues to remember it. However, although I believe this finding adds to our understanding of how to study effectively, I don’t think it challenges the multiple-context evidence.

The finding was possible because of a new approach to studying brain activity, which was used in three experiments involving students at Beijing Normal University. In the first, 24 participants were shown 120 faces, each one shown four times, at variable intervals between the repetitions. They were tested on their recognition (using a set of 240 faces), and how confident they were in their decision, one hour later. Subsequent voxel-by-voxel analysis of 20 brain regions revealed that the similarity of the patterns of brain activity in nine of those regions for each repetition of a specific face was significantly associated with recognition.

In the second experiment, 22 participants carried out a semantic judgment task on 180 familiar words (deciding whether they were concrete or abstract). Each word was repeated three times, again at variable intervals. The participants were tested on their recall of the words six hours later, and then tested for recognition. Fifteen brain regions showed a higher level of pattern similarity across repetitions for recalled items, but not for forgotten items.

In the third experiment, 22 participants performed a different semantic judgment task (living vs non-living) on 60 words. To prevent further encoding, they were also required to perform a visual orientation judgment task for 8 seconds after each semantic judgment. They were given a recall test 30 minutes after the session. Seven of the brain regions showed a significantly higher level of pattern similarity for recalled items.

It's interesting to observe how differences in the pattern of activity occurred when studying the same information only minutes apart — a difference that is presumed to be triggered by context (anything from the previous item to environmental stimuli or passing thoughts). Why do I suggest that this finding, which emphasizes the importance of same-context, doesn’t challenge the evidence for multiple-context? I think it’s an issue of scope.

The finding shows us two important things: that context changes constantly; that repetition is made stronger the closer context is matched. Nevertheless, this study doesn’t bear on the question of long-term recall. The argument has never been that multiple contexts make a memory trace stronger; it has been that it provides more paths to recall — something that becomes of increasing importance the longer the time between encoding and recall.

On the subject of the benefits of walking for seniors, it’s intriguing to note a recent pilot study that found frail seniors who walked slowly (no faster than one meter per second) benefited from a brain fitness program known as Mindfit. After eight weeks of sessions three times weekly (each session 45-60 minutes), all ten participants walked a little faster, and significantly faster while talking. Walking while talking requires considerably more concentration than normal walking. The success of this short intervention (which needs to be replicated in a larger study) offers the hope that frail elderly who may be unable to participate in physical exercise, could improve their mobility through brain fitness programs. Poor gait speed is also correlated with a higher probability of falls.

The connection between gait speed and cognitive function is an interesting one. Previous research has indicated that slow gait should alert doctors to check for cognitive impairment. One study found severe white matter lesions were more likely in those with gait and balance problems. Most recently, a longitudinal study involving over 900 older adults has found poorer global cognitive function, verbal memory, and executive function, were all predictive of greater decline in gait speed.

A new study explains why variable practice improves your memory of most skills better than practice focused on a single task. The study compared skill learning between those asked to practice one particular challenging arm movement, and those who practiced the movement with other related tasks in a variable practice structure. Using magnetic stimulation applied to different parts of the brain after training (which interferes with memory consolidation), it was found that interference to the dorsolateral prefrontal cortex, but not to the primary motor cortex, affected skill learning for those engaged in variable practice, whereas interference to the motor cortex, but not to the prefrontal cortex, affected learning in those engaged in constant practice.

These findings indicate that variable practice involves working memory (which happens in the prefrontal cortex) rather than motor memory, and that the need to re-engage with the task each time underlies the better learning produced by variable practice (which involves repeatedly switching between tasks). The experiment also helps set a time frame for this consolidation — interference four hours after training had no effect.

While brain training programs can certainly improve your ability to do the task you’re practicing, there has been little evidence that this transfers to other tasks. In particular, the holy grail has been very broad transfer, through improvement in working memory. While there has been some evidence of this in pilot programs for children with ADHD, a new study is the first to show such improvement in older adults using a commercial brain training program.

A study involving 30 healthy adults aged 60 to 89 has demonstrated that ten hours of training on a computer game designed to boost visual perception improved perceptual abilities significantly, and also increased the accuracy of their visual working memory to the level of younger adults. There was a direct link between improved performance and changes in brain activity in the visual association cortex.

The computer game was one of those developed by Posit Science. Memory improvement was measured about one week after the end of training. The improvement did not, however, withstand multi-tasking, which is a particular problem for older adults. The participants, half of whom underwent the training, were college educated. The training challenged players to discriminate between two different shapes of sine waves (S-shaped patterns) moving across the screen. The memory test (which was performed before and after training) involved watching dots move across the screen, followed by a short delay and then re-testing for the memory of the exact direction the dots had moved.

A review of the many recent studies into the effects of music training on the nervous system strongly suggests that the neural connections made during musical training also prime the brain for other aspects of human communication, including learning. It’s suggested that actively engaging with musical sounds not only helps the plasticity of the brain, but also helps provide a stable scaffolding of meaningful patterns. Playing an instrument primes the brain to choose what is relevant in a complex situation. Moreover, it trains the brain to make associations between complex sounds and their meaning — something that is also important in language. Music training can provide skills that enable speech to be better heard against background noise — useful not only for those with some hearing impairment (it’s a common difficulty as we get older), but also for children with learning disorders. The review concludes that music training tones the brain for auditory fitness, analogous to the way physical exercise tones the body, and that the evidence justifies serious investment in music training in schools.

[1678] Kraus, N., & Chandrasekaran B.
(2010).  Music training for the development of auditory skills.
Nat Rev Neurosci. 11(8), 599 - 605.

A rat study demonstrates how specialized brain training can reverse many aspects of normal age-related cognitive decline in targeted areas. The month-long study involved daily hour-long sessions of intense auditory training targeted at the primary auditory cortex. The rats were rewarded for picking out the oddball note in a rapid sequence of six notes (five of them of the same pitch). The difference between the oddball note and the others became progressively smaller. After the training, aged rats showed substantial reversal of their previously degraded ability to process sound. Moreover, measures of neuron health in the auditory cortex had returned to nearly youthful levels.

A five-year study involving 48 diverse, 18- to 30-month-old children with autism and no other health problems has found a novel early intervention program to be effective for improving IQ, language ability, and social interaction. The Early Start Denver Model combines applied behavioral analysis (ABA) teaching methods with play-based routines that focused on building a relationship with the child. Half the children received two two-hour sessions five days a week from specialists (but in their own homes) plus five hours a week of parent-delivered therapy. The remaining children were referred to community-based programs. After two years, the IQs of the children in the intervention group had improved by an average of around 18 points, compared to a little more than four points in the comparison group. The intervention group also had a nearly 18-point improvement in receptive language (listening and understanding) compared to around10 points in the comparison group. Seven of the children in the intervention group received an improved diagnosis from autism to the milder condition known as 'pervasive developmental disorder not otherwise specified' (PDD-NOS), compared to only one child in the community-based therapy group.

A digital designer is developing a toolkit to help teachers more effectively assist children with dyslexia. The tool aims to help children remember the sound connected to the letter. For example, you can scroll over the letter "p," and the "p" will then morph to display common items associated with the "puh" sound: (peach, peppermint, pie, pea and piano). Or when moving over a long vowel, the vowel lengthens horizontally; silent letters are shadowed or repel the mouse. And so on. The toolkit has not yet been tested, but I do like the idea. You can catch a 2-minute video showing how it works.

The project, titled "Reading by Design: Visualizing Phonemic Sound for Dyslexic Readers 9-11 Years Old," was presented at the Southwest International Reading Association Regional Conference in Oklahoma City, Okla., on Feb. 5, 2010.

A study in which 60 young adult mice were trained on a series of maze exercises designed to challenge and improve their working memory ability (in terms of retaining and using current spatial information), has found that the mice improved their proficiency on a wide range of cognitive tests, and moreover better retained their cognitive abilities into old age.

Great news for those who crave the benefits of meditation but find the thought a bit intimidating! While a number of studies have demonstrated that long-term mindfulness meditation practice promotes executive functioning and the ability to sustain attention, now a small study involving 49 students has found that as little as four sessions of 20 minutes produced a significant improvement in critical cognitive skills, compared to those who spent an equal amount of time listening to Tolkien's The Hobbit being read aloud. Both groups showed similar improved levels of mood, but only the meditation group improved their cognitive scores. While this group improved on all cognitive tasks, they did dramatically better when under stressful conditions, such as provided by increasingly challenging time-constraints, and particularly in the areas of attention and vigilance. Mindfulness training, as given here, focuses on breathing, letting go one’s thoughts, releasing sensory events that distract. It should be noted that no one is suggesting four days training produces a permanent effect! But it is encouraging to think that benefits might be achieved so quickly. The training also reduced fatigue and anxiety.

A six-week study got a lot of press last month. The study involved some 11,000 viewers of the BBC's science show "Bang Goes the Theory", and supposedly showed that playing online brain games makes you no smarter than surfing the Internet to answer general knowledge questions. In fact, the main problem was the media coverage. The researchers acknowledged that previous research has found some types of individuals benefit from such games (older adults, preschool children, and I would add, children with some learning disabilities such as ADHD), and that video gamers show improved skills in some areas. What they found was that, across this general, mostly well-educated group, the amount of training on these tasks didn't improve performance beyond those specific tasks. This is neither a surprise, nor news. I'll talk more about this in the newsletter coming out early next month.

Older news items (pre-2010) brought over from the old website

Brain-training to improve working memory boosts fluid intelligence

General intelligence is often separated into "fluid" and "crystalline" components, of which fluid intelligence is considered more reflective of “pure” intelligence, and largely resistant to training and learning effects. However, in a new study in which participants were given a series of training exercises designed to improve their working memory, fluid intelligence was found to have significantly improved, with the amount of improvement increasing with time spent training. The small study contradicts decades of research showing that improving on one kind of cognitive task does not improve performance on other kinds, so has been regarded with some skepticism by other researchers. More research is definitely needed, but the memory task did differ from previous studies, engaging executive functions such as those that inhibit irrelevant items, monitor performance, manage two tasks simultaneously, and update memory.

Jaeggi, S.M., Buschkuehl, M., Jonides, J. & Perrig, W.J. 2008. Improving fluid intelligence with training on working memory. PNAS, 105 (19), 6829-6833.

http://www.physorg.com/news128699895.html
http://www.sciam.com/article.cfm?id=study-shows-brain-power-can-be-bolstered

Training improves working memory capacity

Working memory capacity has traditionally been thought to be constant. Recent studies, however, suggest that working memory can be improved by training. In this recent imaging study, it was found that adults who practiced working memory tasks for 5 weeks showed increased brain activity in the middle frontal gyrus and superior and inferior parietal cortices. These changes could be evidence of training-induced plasticity in the neural systems that underlie working memory.

Olesen, P.J., Westerberg, H. & Klingberg, T. 2004. Increased prefrontal and parietal activity after training of working memory. Nature Neuroscience, 7(1), 75-9.

http://www.nature.com/cgi-taf/DynaPage.taf?file=/neuro/journal/v7/n1/abs/nn1165.html

Error | About memory

Error

The website encountered an unexpected error. Please try again later.