Consolidation

We know that the neurotransmitter dopamine is involved in making strong memories. Now a mouse study helps us get more specific — and suggests how we can help ourselves learn.

The study, involving 120 mice, found that mice tasked with remembering where food had been hidden did better if they had been given a novel experience (exploring an unfamiliar floor surface) 30 minutes after being trained to remember the food location.

This memory improvement also occurred when the novel experience was replaced by the selective activation of dopamine-carrying neurons in the locus coeruleus that go to the hippocampus. The locus coeruleus is located in the brain stem and involved in several functions that affect emotion, anxiety levels, sleep patterns, and memory. The dopamine-carrying neurons in the locus coeruleus appear to be especially sensitive to environmental novelty.

In other words, if we’re given attention-grabbing experiences that trigger these LC neurons carrying dopamine to the hippocampus at around the time of learning, our memories will be stronger.

Now we already know that emotion helps memory, but what this new study tells us is that, as witness to the mice simply being given a new environment to explore, these dopamine-triggering experiences don’t have to be dramatic. It’s suggested that it could be as simple as playing a new video game during a quick break while studying for an exam, or playing tennis right after trying to memorize a big speech.

Remember that we’re designed to respond to novelty, to pay it more attention — and, it seems, that attention is extended to more mundane events that occur closely in time.

Emotionally positive situations boost memory for similar future events

In a similar vein, a human study has found that the benefits of reward extend forward in time.

In the study, volunteers were shown images from two categories (objects and animals), and were financially rewarded for one of these categories. As expected, they remembered images associated with a reward better. In a second session, however, they were shown new images of animals and objects without any reward. Participants still remembered the previously positively-associated category better.

Now, this doesn’t seem in any way surprising, but the interesting thing is that this benefit wasn’t seen immediately, but only after 24 hours — that is, after participants had slept and consolidated the learning.

Previous research has shown similar results when semantically related information has been paired with negative, that is, aversive stimuli.

https://www.eurekalert.org/pub_releases/2016-09/usmc-rim090716.php

http://www.eurekalert.org/pub_releases/2016-06/ibri-eps061516.php

Sleep, as I have said on many occasions, helps your brain consolidate new memories. I have reported before on a number of studies showing how sleep helps the learning of various types of new information. Most of those studies have looked at procedural learning (learning new skills), or verbal learning. A new study adds to these by looking at face-name associations.

The small study, involving 14 young adults, found that that they were significantly better at remembering faces and names if they were given an opportunity to have a full night's sleep hours after seeing those faces and names for the first time.

Participants were shown 20 photos of faces with corresponding names and asked to memorize them. After a twelve-hour period, they were then shown the photos again with either a correct or incorrect name. They were also asked to rate their confidence in their answer. Each participant completed the test twice — once with an interval of sleep in between and once with a period of regular, waking day activities in between.

After a night's sleep, participants correctly matched 12% more of the faces and names, and were much more confident of their answers.

Of course, this is not a huge difference, given the small number of face-name pairs, and the sample is small. I would have also liked to see further testing 12 hours later, so that we could compare the effects of a day followed by a night, versus a night followed by a day (this would have required more stimuli and more participants, of course).

So, not madly exciting, but taken in context of other research, it adds to the growing evidence that sleep helps you consolidate new learning of all kinds.

http://www.eurekalert.org/pub_releases/2015-11/bawh-wtr112315.php

We know sleep helps consolidate memories. Now a new study sheds light on how your sleeping brain decides what’s worth keeping. The study found that when the information that makes up a memory has a high value—associated with, for example, making more money—the memory is more likely to be rehearsed and consolidated during sleep.

The study involved 60 young adults who learned the unique locations of 72 objects on a screen while hearing characteristic object sounds. Each object was assigned a value indicating the reward that could be earned if remembered later. Recall was tested 45 minutes later, followed by a 90 minute break, during which participants either slept or remained awake. In the sleep condition, low-intensity white noise was played to mask any external sounds. In one condition, 18 of the sound cues associated with low-value objects were also repeatedly presented during the sleep period. In the wake condition, participants either watched a movie or performed a difficult working memory task (during which the sound cues were similarly sometimes presented in the background).

For all groups, at the first memory test, recall accuracy was significantly lower for low-value items compared to high-value (there was not, unsurprisingly, any difference between the groups). But let’s get to the important results. After sleep, in the absence of sound reminders, accuracy declined significantly more for low-value objects than for high-value objects. However, when sound cues had been played during sleep (although participants had no awareness of them), low-value objects were not differentially disadvantaged.

Interestingly, the sound reminders benefited not only those low-value objects which were cued, but all the low-value objects.  But, in the wake condition, when sound cues had been softly played in the background, only those objects which had been cued benefited from the reminders.

Also interestingly, two participants who heard the cues during stage 2 sleep rather than slow-wave sleep received the least benefit.

What all this suggests is that covert reactivation may be a major factor in determining what gets chosen for consolidation, and wake and sleep reactivation might play distinct roles in this process - the former helping to strengthen individual, salient memories, and the latter strengthening, while also linking togther, categorically related memories.

The findings provide more weight to the idea that I have propounded before — that it’s worth consciously reviewing the day's memories that you want to keep, just before going to sleep.

http://www.futurity.org/science-technology/sleeping-on-it-helps-memories-stick/

[3381] Oudiette D, Antony JW, Creery JD, Paller KA. The Role of Memory Reactivation during Wakefulness and Sleep in Determining Which Memories Endure. The Journal of Neuroscience [Internet]. 2013 ;33(15):6672 - 6678. Available from: http://www.jneurosci.org/content/33/15/6672

Recent research has suggested that sleep problems might be a risk factor in developing Alzheimer’s, and in mild cognitive impairment. A new study adds to this gathering evidence by connecting reduced slow-wave sleep in older adults to brain atrophy and poorer learning.

The study involved 18 healthy young adults (mostly in their 20s) and 15 healthy older adults (mostly in their 70s). Participants learned 120 word- nonsense word pairs and were tested for recognition before going to bed. Their brain activity was recorded while they slept. Brain activity was also measured in the morning, when they were tested again on the word pairs.

As has been found previously, older adults showed markedly less slow-wave activity (both over the whole brain and specifically in the prefrontal cortex) than the younger adults. Again, as in previous studies, the biggest difference between young and older adults in terms of gray matter volume was found in the medial prefrontal cortex (mPFC). Moreover, significant differences were also found in the insula and posterior cingulate cortex. These regions, like the mPFC, have also been associated with the generation of slow waves.

When mPFC volume was taken into account, age no longer significantly predicted the extent of the decline in slow-wave activity — in other words, the decline in slow-wave activity appears to be due to the brain atrophy in the medial prefrontal cortex. Atrophy in other regions of the brain (precuneus, hippocampus, temporal lobe) was not associated with the decline in slow-wave activity when age was considered.

Older adults did significantly worse on the delayed recognition test than young adults. Performance on the immediate test did not predict performance on the delayed test. Moreover, the highest performers on the immediate test among the older adults performed at the same level as the lowest young adult performers — nevertheless, these older adults did worse the following day.

Slow-wave activity during sleep was significantly associated with performance on the next day’s test. Moreover, when slow-wave activity was taken into account, neither age nor mPFC atrophy significantly predicted test performance.

In other words, age relates to shrinkage of the prefrontal cortex, this shrinkage relates to a decline in slow-wave activity during sleep, and this decline in slow-wave sleep relates to poorer cognitive performance.

The findings confirm the importance of slow-wave brainwaves for memory consolidation.

All of this suggests that poorer sleep quality contributes significantly to age-related cognitive decline, and that efforts should be made to improve quality of sleep rather than just assuming lighter, more disturbed sleep is ‘natural’ in old age!

Because sleep is so important for memory and learning (and gathering evidence suggests sleep problems may play a significant role in age-related cognitive impairment), I thought I’d make quick note of a recent review bringing together all research on the immediate effects of alcohol on the sleep of healthy individuals.

The review found that alcohol in any amount reduces the time it takes to fall asleep, while greater amounts produce increasing amounts of deep sleep in the first half of the night. However, sleep is more disrupted in the second half. While increased deep sleep is generally good, there are two down sides here: first, it’s paired with sleep disruption in the second half of the night; second, those predisposed to problems such as sleepwalking or sleep apnea may be more vulnerable to them. (A comment from the researchers that makes me wonder if the relationship between deep sleep and slow-wave activity is more complicated than I realized.)

Additionally, at high doses of alcohol, REM sleep is significantly reduced in the first half, and overall. This may impair attention, memory, and motor skills. Moreover, at all doses, the first REM period is significantly delayed, producing less restful sleep.

The researchers conclude that, while alcohol may give the illusion of improving sleep, it is not in fact doing so.

[3269] Ebrahim IO, Shapiro CM, Williams AJ, Fenwick PB. Alcohol and Sleep I: Effects on Normal Sleep. Alcoholism: Clinical and Experimental Research [Internet]. 2013 :n/a - n/a. Available from: http://onlinelibrary.wiley.com/doi/10.1111/acer.12006/abstract

A new study adds more support to the idea that the increasing difficulty in learning new information and skills that most of us experience as we age is not down to any difficulty in acquiring new information, but rests on the interference from all the old information.

Memory is about strengthening some connections and weakening others. A vital player in this process of synaptic plasticity is the NMDA receptor in the hippocampus. This glutamate receptor has two subunits (NR2A and NR2B), whose ratio changes as the brain develops. Children have higher ratios of NR2B, which lengthens the time neurons talk to each other, enabling them to make stronger connections, thus optimizing learning. After puberty, the ratio shifts, so there is more NR2A.

Of course, there are many other changes in the aging brain, so it’s been difficult to disentangle the effects of this changing ratio from other changes. This new study genetically modified mice to have more NR2A and less NR2B (reflecting the ratio typical of older humans), thus avoiding the other confounds.

To the researchers’ surprise, the mice were found to be still good at making strong connections (‘long-term potentiation’ - LTP), but instead had an impaired ability to weaken existing connections (‘long-term depression’ - LTD). This produces too much noise (bear in mind that each neuron averages 3,000 potential points of contact (i.e., synapses), and you will see the importance of turning down the noise!).

Interestingly, LTD responses were only abolished within a particular frequency range (3-5 Hz), and didn’t affect 1Hz-induced LTD (or 100Hz-induced LTP). Moreover, while the mice showed impaired long-term learning, their short-term memory was unaffected. The researchers suggest that these particular LTD responses are critical for ‘post-learning information sculpting’, which they suggest is a step (hitherto unknown) in the consolidation process. This step, they postulate, involves modifying the new information to fit in with existing networks of knowledge.

Previous work by these researchers has found that mice genetically modified to have an excess of NR2B became ‘super-learners’. Until now, the emphasis in learning and memory has always been on long-term potentiation, and the role (if any) of long-term depression has been much less clear. These results point to the importance of both these processes in sculpting learning and memory.

The findings also seem to fit in with the idea that a major cause of age-related cognitive decline is the failure to inhibit unwanted information, and confirm the importance of keeping your mind actively engaged and learning, because this ratio is also affected by experience.

The neurotransmitter dopamine is found throughout the brain and has been implicated in a number of cognitive processes, including memory. It is well-known, of course, that Parkinson's disease is characterized by low levels of dopamine, and is treated by raising dopamine levels.

A new study of older adults has now demonstrated the effect of dopamine on episodic memory. In the study, participants (aged 65-75) were shown black and white photos of indoor scenes and landscapes. The subsequent recognition test presented them with these photos mixed in with new ones, and required them to note which photos they had seen before. Half of the participants were first given Levodopa (‘L-dopa’), and half a placebo.

Recognition tests were given two and six hours after being shown the photos. There was no difference between the groups at the two-hour test, but at the six-hour test, those given L-dopa recognized up to 20% more photos than controls.

The failure to find a difference at the two-hour test was expected, if dopamine’s role is to help strengthen the memory code for long-term storage, which occurs after 4-6 hours.

Individual differences indicated that the ratio between the amount of Levodopa taken and body weight is key for an optimally effective dose.

The findings therefore suggest that at least part of the reason for the decline in episodic memory typically seen in older adults is caused by declining levels of dopamine.

Given that episodic memory is one of the first and greatest types of memory hit by Alzheimer’s, this finding also has implications for Alzheimer’s treatment.

Caffeine improves recognition of positive words

Another recent study also demonstrates, rather more obliquely, the benefits of dopamine. In this study, 200 mg of caffeine (equivalent to 2-3 cups of coffee), taken 30 minutes earlier by healthy young adults, was found to improve recognition of positive words, but had no effect on the processing of emotionally neutral or negative words. Positive words are consistently processed faster and more accurately than negative and neutral words.

Because caffeine is linked to an increase in dopamine transmission (an indirect effect, stemming from caffeine’s inhibitory effect on adenosine receptors), the researchers suggest that this effect of caffeine on positive words demonstrates that the processing advantage enjoyed by positive words is driven by the involvement of the dopaminergic system.

Back in 2010, I briefly reported on a study suggesting that a few minutes of ‘quiet time’ could help you consolidate new information. A new study provides more support for this idea.

In the first experiment, 14 older adults (aged 61-81) were told a short story, with instructions to remember as many details as possible. Immediately afterward, they were asked to describe what happened in the story. Ten minutes then elapsed, during which they either rested quietly (with eyes closed in a darkened room), or played a spot-the-difference game on the computer (comparing pairs of pictures). This task was chosen because it was non-verbal and sufficiently different from the story task to not directly compete for cognitive resources.

This first learning phase was followed by five minutes of playing the spot-the-difference game (for all participants) and then a second learning phase, in which the process was repeated with a second story, and participants experienced the other activity during the delay period (e.g., rest if they had previously played the game).

Some 30 minutes after the first story presentation (15 minutes after the second), participants were unexpectedly asked to once again recall as many details as they could from the stories. A further recall test was also given one week later.

Recall on the first delayed test (at the end of both learning phases) was significantly better for stories that had been followed by wakeful resting rather than a game. While recall declined at the same rate for both story conditions, the benefits of wakeful resting were maintained at the test one week later.

In a second experiment, the researchers looked at whether these benefits would still occur if there was no repetition (i.e., no delayed recall test at the time, only at a week). Nineteen older adults (61-87) participated.

As expected, in the absence of the short-delay retrieval test, recall at a week was slightly diminished. Nevertheless, recall for stories that had been followed by rest was still significantly better than recall for stories followed by the game.

It’s worth noting that, in a post-session interview, only 3 participants (of the 33 total) reported thinking about the story during the period of wakeful rest. One participant fell asleep. Twelve participants reported thinking about the stories at least once during the week, but there was no difference between these participants’ scores and those who didn’t think about them.

These findings support the idea that a quiet period of reflection after new learning helps the memories be consolidated. While the absence of interfering information may underlie this, the researchers did select the game specifically to interfere as little as possible with the story task. Moreover, the use of the same task as a ‘filler’ between the two learning phases was also designed to equalize any interference it might engender.

The weight of the evidence, therefore, is that ten minutes of wakeful resting aided memory by providing the mental space in which to consolidate the memory. Moreover, the fact that so few participants actively thought about the stories during that rest indicates that such consolidation is automatic and doesn’t require deliberate rehearsal.

The study did, of course, only involve older adults. I hope we will see a larger study with a wider participant pool.

Back when I was young, sleep learning was a popular idea. The idea was that a tape would play while you were asleep, and learning would seep into your brain effortlessly. It was particularly advocated for language learning. Subsequent research, unfortunately, rejected the idea, and gradually it has faded (although not completely). Now a new study may presage a come-back.

In the study, 16 young adults (mean age 21) learned how to ‘play’ two artificially-generated tunes by pressing four keys in time with repeating 12-item sequences of moving circles — the idea being to mimic the sort of sensorimotor integration that occurs when musicians learn to play music. They then took a 90-minute nap. During slow-wave sleep, one of the tunes was repeatedly played to them (20 times over four minutes). After the nap, participants were tested on their ability to play the tunes.

A separate group of 16 students experienced the same events, but without the playing of the tune during sleep. A third group stayed awake, during which 90-minute period they played a demanding working memory task. White noise was played in the background, and the melody was covertly embedded into it.

Consistent with the idea that sleep is particularly helpful for sensorimotor integration, and that reinstating information during sleep produces reactivation of those memories, the sequence ‘practiced’ during slow-wave sleep was remembered better than the unpracticed one. Moreover, the amount of improvement was positively correlated with the proportion of time spent in slow-wave sleep.

Among those who didn’t hear any sounds during sleep, improvement likewise correlated with the proportion of time spent in slow-wave sleep. The level of improvement for this group was intermediate to that of the practiced and unpracticed tunes in the sleep-learning group.

The findings add to growing evidence of the role of slow-wave sleep in memory consolidation. Whether the benefits for this very specific skill extend to other domains (such as language learning) remains to be seen.

However, another recent study carried out a similar procedure with object-location associations. Fifty everyday objects were associated with particular locations on a computer screen, and presented at the same time with characteristic sounds (e.g., a cat with a meow and a kettle with a whistle). The associations were learned to criterion, before participants slept for 2 hours in a MR scanner. During slow-wave sleep, auditory cues related to half the learned associations were played, as well as ‘control’ sounds that had not been played previously. Participants were tested after a short break and a shower.

A difference in brain activity was found for associated sounds and control sounds — associated sounds produced increased activation in the right parahippocampal cortex — demonstrating that even in deep sleep some sort of differential processing was going on. This region overlapped with the area involved in retrieval of the associations during the earlier, end-of-training test. Moreover, when the associated sounds were played during sleep, parahippocampal connectivity with the visual-processing regions increased.

All of this suggests that, indeed, memories are being reactivated during slow-wave sleep.

Additionally, brain activity in certain regions at the time of reactivation (mediotemporal lobe, thalamus, and cerebellum) was associated with better performance on the delayed test. That is, those who had greater activity in these regions when the associated sounds were played during slow-wave sleep remembered the associations best.

The researchers suggest that successful reactivation of memories depends on responses in the thalamus, which if activated feeds forward into the mediotemporal lobe, reinstating the memories and starting the consolidation process. The role of the cerebellum may have to do with the procedural skill component.

The findings are consistent with other research.

All of this is very exciting, but of course this is not a strategy for learning without effort! You still have to do your conscious, attentive learning. But these findings suggest that we can increase our chances of consolidating the material by replaying it during sleep. Of course, there are two practical problems with this: the material needs an auditory component, and you somehow have to replay it at the right time in your sleep cycle.

A new study has found that, when delivered quickly, a modified form of prolonged exposure therapy reduces post-traumatic stress reactions and depression.

The study involved 137 patients being treated in the emergency room of a major trauma center in Atlanta. The patients were chosen from survivors of traumatic events such as rape, car or industrial accidents, and shooting or knife attacks. Participants were randomly assigned to either receive three sessions of therapy beginning in the emergency department (an average of 12 hours after the event), or assessment only. Stress reactions were assessed at 4 and 12 weeks, and depression at baseline and 4 weeks.

Those receiving the therapy reported significantly lower post-traumatic stress at 4 weeks and 12 weeks, and significantly lower depression at 4 weeks. Analysis of subgroups revealed that the therapy was most effective in rape victims. In the cases of transport accidents and physical (non-sexual) assault, the difference between therapy and assessment-only was only barely significant (for transport at 4 weeks) or non-significant. In both subgroups, the effect was decidedly less at 12 weeks than at 4 weeks.

The therapy, carried out by trained therapists, involved participants describing the trauma they had experienced while the therapist recorded the description. The bulk of the hour-long session was taken up with reliving and processing the experience. There were three sessions spaced a week apart. The patients were instructed to listen to their recordings every day, and 85% were compliant. The therapists also explained normal reactions to trauma, helped the patients look at obtrusive thoughts of guilt or responsibility, and taught them a brief breathing or relaxation technique and self care.

While this study doesn’t itself compare the effects of immediate vs delayed therapy, the assumption that delivering the therapy so soon after the trauma is a crucial factor in its success is in line with other research (mainly to do with fear-conditioning in rodent and human laboratory studies). Moreover, while brief cognitive-behavioral therapy has previously been shown to be effective with people diagnosed with acute stress disorder, such therapy is normally begun some 2-4 weeks after trauma, and a study of female assault survivors found that although such therapy did indeed accelerate recovery compared with supportive counseling, after 9 months, PTSD severity was similar in both groups.

Another, severe, limitation of this study is that the therapy involved multiple items. We cannot assume that it was the repeated re-experiencing of the event that is critical.

However, this study is only a pilot study, and its findings are instructive rather than decisive. But at the least it does support the idea that immediate therapy is likely to help victims of trauma recover more quickly.

One final, important, note: It should not, of course, be assumed that simply having the victim describe the events — say to police officers — is in itself therapeutic. Done badly, that experience may itself be traumatic.

We know that we remember more 12 hours after learning if we have slept during that 12 hours rather than been awake throughout, but is this because sleep is actively helping us remember, or because being awake makes it harder to remember (because of interference and over-writing from other experiences). A new study aimed to disentangle these effects.

In the study, 207 students were randomly assigned to study 40 related or unrelated word pairs at 9 a.m. or 9 p.m., returning for testing either 30 minutes, 12 hours or 24 hours later.

As expected, at the 12-hour retest, those who had had a night’s sleep (Evening group) remembered more than those who had spent the 12 hours awake (Morning group). But this result was because memory for unrelated word pairs had deteriorated badly during 12 hours of wakefulness; performance on the related pairs was the same for the two groups. Performance on the related and unrelated pairs was the same for those who slept.

For those tested at 24 hours (participants from both groups having received both a full night of sleep and a full day of wakefulness), those in the Evening group (who had slept before experiencing a full day’s wakefulness) remembered significantly more than the Morning group. Specifically, the Evening group showed a very slight improvement over training, while the Morning group showed a pronounced deterioration.

This time, both groups showed a difference for related versus unrelated pairs: the Evening group showed some deterioration for unrelated pairs and a slightly larger improvement for related pairs; the Morning group showed a very small deterioration for related pairs and a much greater one for unrelated pairs. The difference between recall of related pairs and recall of unrelated pairs was, however, about the same for both groups.

In other words, unrelated pairs are just that much harder to learn than related ones (which we already know) — over time, learning them just before sleep vs learning early in the day doesn’t make any difference to that essential truth. But the former strategy will produce better learning for both types of information.

A comparison of the 12-hour and 24-hour results (this is the bit that will help us disentangle the effects of sleep and wakefulness) reveals that twice as much forgetting of unrelated pairs occurred during wakefulness in the first 12 hours, compared to wakefulness in the second 12 hours (after sleep), and 3.4 times more forgetting of related pairs (although this didn’t reach significance, the amount of forgetting being so much smaller).

In other words, sleep appears to slow the rate of forgetting that will occur when you are next awake; it stabilizes and thus protects the memories. But the amount of forgetting that occurred during sleep was the same for both word types, and the same whether that sleep occurred in the first 12 hours or the second.

Participants in the Morning and Evening groups took a similar number of training trials to reach criterion (60% correct), and there was no difference in the time it took to learn unrelated compared to related word pairs.

It’s worth noting that there was no difference between the two groups, or for the type of word pair, at the 30-minutes test either. In other words, your ability to remember something shortly after learning it is not a good guide for whether you have learned it ‘properly’, i.e., as an enduring memory.

The study tells us that the different types of information are differentially affected by wakefulness, that is, perhaps, they are more easily interfered with. This is encouraging, because semantically related information is far more common than unrelated information! But this may well serve as a reminder that integrating new material — making sure it is well understood and embedded into your existing database — is vital for effective learning.

The findings also confirm earlier evidence that running through any information (or skills) you want to learn just before going to bed is a good idea — and this is especially true if you are trying to learn information that is more arbitrary or less well understood (i.e., the sort of information for which you are likely to use mnemonic strategies, or, horror of horrors, rote repetition).

Now that we’ve pretty much established that sleep is crucial for consolidating memory, the next question is how much sleep we need.

A new study compared motor sequence learning in 16 people with mild obstructive sleep apnea to a matched control group (also attending the sleep clinic). There were no significant differences between the groups in total sleep time, sleep efficiency and sleep architecture (time spent in the various sleep stages), subjective measures of sleepiness, or performance on a psychomotor vigilance task (a task highly sensitive to sleep deprivation).

Nor were there any differences in learning performance during the training phase on the motor task.

But the interesting thing about consolidation is that skills usually improve overnight — your performance the next day will usually be better than it was at the end of your training. And here there was a significant difference between the groups, with the controls showing much greater overnight improvement on the motor sequence task. For sequences learned in the morning and tested 12 hours later on the same day, however, there were no differences between the groups.

So given all the factors relating to sleep that were the same between the two groups, what was the factor behind the group consolidation difference? It turns out it was (principally) the arousal index (arousals were scored on the basis of abrupt shifts in EEG frequency that last at least 3 seconds with 10 seconds of stable sleep preceding), and to a lesser extent the apnea-hypopnea index.

It seems likely, then, that arousals from sleep may (depending, presumably, on timing) interrupt the transfer of labile memories from the hippocampus to the neocortex for long-term storage. Thus, the more arousals you have, the more likely it is that this process will be interrupted.

Previous research has shown that negative objects and events are preferentially consolidated in sleep — if you experience them in the evening, you are more likely to remember them than more neutral objects or events, but if you experience them in the morning, they are not more likely to be remembered than other memories (see collected sleep reports). However, more recent studies have failed to find this. A new study also fails to find such preferential consolidation, but does find that our emotional reaction to traumatic or disturbing events can be greatly reduced if we stay awake afterward.

Being unable to sleep after such events is of course a common response — these findings indicate there’s good reason for it, and we should go along with it rather than fighting it.

The study involved 106 young adults rating pictures on a sad-happy scale and their own responses on an excited-calm scale. Twelve hours later, they were given a recognition test: noting pictures they had seen earlier from a mix of new and old pictures. They also rated all the pictures on the two scales. There were four groups: 41 participants saw the first set late in the day and the second set 12 hours later on the following day (‘sleep group’); 41 saw the first set early and the second set 12 hours later on the same day; 12 participants saw both sets in the evening, with only 45 minutes between the sets; 12 participants saw both sets in the morning (these last two groups were to rule out circadian effects). 25 of the sleep group had their brain activity monitored while they slept.

The sleep group performed significantly better on the recognition test than the same-day group. Negative pictures were remembered better than neutral ones. However, unlike earlier studies, the sleep group didn’t preferentially remember negative pictures more than the same-day group.

But, interestingly, the sleep group was more likely to maintain the strength of initial negative responses. The same-day group showed a weaker response to negative scenes on the second showing.

It’s been theorized that late-night REM sleep is critical for emotional memory consolidation. However, this study found no significant relationship between the amount of time spent in REM sleep and recognition memory, nor was there any relationship between other sleep stages and memory. There was one significant result: those who had more REM sleep in the third quarter of the night showed the least reduction of emotional response to the negative pictures.

There were no significant circadian effects, but it’s worth noting that even the 45 minute gap between the sets was sufficient to weaken the negative effect of negative scenes.

While there was a trend toward a gender effect, it didn’t reach statistical significance, and there were no significant interactions between gender and group or emotional value.

The findings suggest that the effects of sleep on memory and emotion may be independent.

The findings also contradict previous studies showing preferential consolidation of emotional memories during sleep, but are consistent with two other recent studies that have also failed to find this. At this stage, all we can say is that there may be certain conditions in which this occurs (or doesn’t occur), but more research is needed to determine what these conditions are. Bear in mind that there is no doubt that sleep helps consolidate memories; we are talking here only about emphasizing negative memories at the expense of emotionally-neutral ones.

When a middle-aged woman loses her memory after sex, it naturally makes the headlines. Many might equate this sort of headline to “Man marries alien”, but this is an example of a rare condition — temporary, you will be relieved to hear — known as transient global amnesia. Such abrupt, localized loss of autobiographical memory is usually preceded by strenuous physical activity or stressful events. It generally occurs in middle-aged or older adults, but has been known to occur in younger people. In those cases, there may be a history of migraine or head trauma.

Following an earlier study in which 29 of 41 TGA patients were found to have small lesions in the CA1 region of the hippocampus, scanning of another 16 TGA patients has revealed 14 had these same lesions. It seems likely that all the patients had such lesions, but because they are very small and don’t last long, they’re easy to miss. The lesion is best seen after 24-72 hours, but is gone after 5-6 days.

At the start of one of these attacks, memory for the first 30 years of life was significantly impaired, but still much better than memory for the years after that. There was a clear temporal gradient, with memory increasingly worse for events closer in time. There was no difference between events in the previous year and events in the previous five years, but a clear jump at that five-year point.

The exact location of the lesions was significant: when the lesion was in the anterior part of the region, memory for recent events was more impaired.

The hippocampus is known to be crucially involved in episodic memory (memory for events), and an integral part of the network for autobiographical memory. In recent years, it has come to be thought that such memories are only hosted temporarily by the hippocampus, and over a few years come to be permanently lodged in the neocortex (the standard consolidation model). Evidence from a number of studies of this change at the five-year mark has been taken as support for this theory. According to this, then, older memories should be safe from hippocampal damage.

An opposing theory, however, is that the hippocampus continues to be involved in such memories, with both the neocortex and the hippocampus involved in putting together reconsolidated memories (the multiple trace model). According to this model, each retrieval of an episodic memory creates a new version in the hippocampus. The more versions, the better protected a memory will be from any damage to the hippocampus.

The findings from this study show that while there is indeed a significant difference between older and more recent memories, the CA1 region of the hippocampus continues to be crucial for retrieving older memories, and for our sense of self-continuity.

Interestingly, some studies have also found a difference between the left and right hemispheres, with the right hippocampus showing a temporal gradient and the left hippocampus showing constant activation across all time periods. Such a hemisphere difference was not found in the present study. The researchers suggest that the reason may lie in the age of the participants (average age was 68), reflecting a reduction in hemispheric asymmetry with age.

There’s another message in this study. In these cases of TGA, memory function is restored within 24 hours (and generally sooner, within 6-10 hours). This shows how fast the brain can repair damage. Similarly, the fact that such tiny lesions have temporary effects so much more dramatic than the more lasting effects of larger lesions, is also a tribute to the plasticity of the brain.

The findings are consistent with findings of a preferential degeneration of CA1 neurons in the early stages of Alzheimer's disease, and suggest a target for treatment.

Trying to learn two different things one after another is challenging. Almost always some of the information from the first topic or task gets lost. Why does this happen? A new study suggests the problem occurs when the two information-sets interact, and demonstrates that disrupting that interaction prevents interference. (The study is a little complicated, but bear with me, or skip to the bottom for my conclusions.)

In the study, young adults learned two memory tasks back-to-back: a list of words, and a finger-tapping motor skills task. Immediately afterwards, they received either sham stimulation or real transcranial magnetic stimulation to the dorsolateral prefrontal cortex or the primary motor cortex. Twelve hours later the same day, they were re-tested.

As expected from previous research, word recall (being the first-learned task) declined in the control condition (sham stimulation), and this decline correlated with initial skill in the motor task. That is, the better they were at the second task, the more they forgot from the first task. This same pattern occurred among those whose motor cortex had been stimulated. However, there was no significant decrease in word recall for those who had received TMS to the dorsolateral prefrontal cortex.

Learning of the motor skill didn't differ between the three groups, indicating that this effect wasn't due to a disruption of the second task. Rather, it seems that the two tasks were interacting, and TMS to the DLPFC disrupted that interaction. This hypothesis was supported when the motor learning task was replaced by a motor performance task, which shouldn’t interfere with the word-learning task (the motor performance task was almost identical to the motor learning task except that it didn’t have a repeating sequence that could be learned). In this situation, TMS to the DLPFC produced a decrease in word recall (as it did in the other conditions, and as it would after a word-learning task without any other task following).

In the second set of experiments, the order of the motor and word tasks was reversed. Similar results occurred, with this time stimulation to the motor cortex being the effective intervention. In this case, there was a significant increase in motor skill on re-testing — which is what normally happens when a motor skill is learned on its own, without interference from another task (see my blog post on Mempowered for more on this). The word-learning task was then replaced with a vowel-counting task, which produced a non-significant trend toward a decrease in motor skill learning when TMS was applied to the motor cortex.

The effect of TMS depends on the activity in the region at the time of application. In this case, TMS was applied to the primary motor cortex and the DLPFC in the right hemisphere, because the right hemisphere is thought to be involved in integrating different types of information. The timing of the stimulation was critical: not during learning, and long before testing. The timing was designed to maximize any effects on interference between the two tasks.

The effect in this case mimics that of sleep — sleeping between tasks reduces interference between them. It’s suggested that both TMS and sleep reduce interference by reducing the communication between the prefrontal cortex and the mediotemporal lobe (of which the hippocampus is a part).

Here’s the problem: we're consolidating one set of memories while encoding another. So, we can do both at the same time, but as with any multitasking, one task is going to be done better than the other. Unsurprisingly, encoding appears to have priority over consolidation.

So something needs to regulate the activity of these two concurrent processes. Maybe something looks for commonalities between two actions occurring at the same time — this is, after all, what we’re programmed to do: we link things that occur together in space and time. So why shouldn’t that occur at this level too? Something’s just happened, and now something else is happening, and chances are they’re connected. So something in our brain works on that.

If the two events/sets of information are connected, that’s a good thing. If they’re not, we get interference, and loss of data.

So when we apply TMS to the prefrontal cortex, that integrating processor is perhaps disrupted.

The situation may be a little different where the motor task is followed by the word-list, because motor skill consolidation (during wakefulness at least) may not depend on the hippocampus (although declarative encoding does). However, the primary motor cortex may act as a bridge between motor skills and declarative memories (think of how we gesture when we explain something), and so it may this region that provides a place where the two types of information can interact (and thus interfere with each other).

In other words, the important thing appears to be whether consolidation of the first task occurs in a region where the two sets of information can interact. If it does, and assuming you don’t want the two information-sets to interact, then you want to disrupt that interaction.

Applying TMS is not, of course, a practical strategy for most of us! But the findings do suggest an approach to reducing interference. Sleep is one way, and even brief 20-minute naps have been shown to help learning. An intriguing speculation (I just throw this out) is that meditation might act similarly (rather like a sorbet between courses, clearing the palate).

Failing a way to disrupt the interaction, you might take this as a warning that it’s best to give your brain time to consolidate one lot of information before embarking on an unrelated set — even if it's in what appears to be a completely unrelated domain. This is particularly so as we get older, because consolidation appears to take longer as we age. For children, on the other hand, this is not such a worry. (See my blog post on Mempowered for more on this.)

[2338] Cohen DA, Robertson EM. Preventing interference between different memory tasks. Nat Neurosci [Internet]. 2011 ;14(8):953 - 955. Available from: http://dx.doi.org/10.1038/nn.2840

In the first study, undergraduates studied English-Lithuanian word pairs, which were displayed on a screen one by one for 10 seconds. After studying the list, the students practiced retrieving the English words — they had 8 seconds to type in the English word as each Lithuanian word appeared, and those that were correct went to the end of the list to be asked again, and those wrong had to be restudied. Each item was pre-assigned a "criterion level" from one to five — the number of times it needed to be correctly recalled during practice.

In the first experiment, participants took one of four recall tests and one of three recognition tests after a 2-day delay. In the second experiment, in order to eliminate the reminder effect of the recall test, participants were only given a recognition test, after a 1-week delay.

Both experiments found that higher criterion levels led to better memory. More importantly, through the variety of tests, they showed that this occurred on all three kinds of memory tested: associative memory; target memory; cue memory. That is, practicing retrieval of the English word didn’t just improve memory for that word (the target), but also for the Lithuanian word (the cue), and the pairing (association).

While this may seem self-evident to some, it has been thought that only the information being retrieved is strengthened by retrieval practice. The results also emphasize that it is the correct retrieval of the information that improves memory, not the number of times the information is studied.

In a related study, 533 students learned conceptual material via retrieval practice across three experiments. Criterion levels varied from one to four correct retrievals in the initial session. Items also varied in how many subsequent sessions they were exposed to. In one to five testing/relearning sessions, the items were practiced until they were correctly recalled once. Memory was tested one to four months later.

It was found that the number of times items were correctly retrieved on the initial session had a strong initial effect, but this weakened as relearning increased. Relearning had pronounced effects on long-term retention with a relatively minimal cost in terms of additional practice trials.

On the basis of their findings, the researchers recommend that students practice recalling concepts to an initial criterion of three correct recalls and then relearn them three times at widely spaced intervals.

[2457] Vaughn KE, Rawson KA. Diagnosing Criterion-Level Effects on Memory. Psychological Science [Internet]. 2011 . Available from: http://pss.sagepub.com/content/early/2011/08/02/0956797611417724.abstract

Rawson, K.A. & Dunlosky, J. 2011. Optimizing schedules of retrieval practice for durable and efficient learning: How much is enough? Journal of Experimental Psychology: General, Jun 27, 2011, No Pagination Specified. doi: 10.1037/a0023956

I’ve spoken often about the spacing effect — that it’s better to spread out your learning than have it all massed in a block. A study in which mice were trained on an eye movement task (the task allowed precise measurement of learning in the brain) compared learning durability after massed training or training spread over various spaced intervals (2.5 hours to 8 days, with 30 minute to one day intervals). In the case of massed training, the learning achieved at the end of training disappeared within 24 hours. However learning gained in spaced training did not.

Moreover, when a region in the cerebellum connected to motor nuclei involved in eye movement (the flocculus) was anesthetized, the learning achieved from one hour of massed training was eliminated, while learning achieved from an hour of training spaced out over four hours was unaffected. This suggests that the memories had been transferred out of the flocculus (to the vestibular nuclei) within four hours.

However, when protein synthesis in the flocculus was blocked, learning from spaced training was impaired, while learning from massed training was not. This suggests that proteins synthesized in the flocculus play a vital part in the transfer to the vestibular nuclei.

Childhood amnesia — our inability to remember almost everything that happened to us when very young — is always interesting. It’s not as simple as an inability to form long-term memories. Most adults can’t remember events earlier than 3-4 years (there is both individual and cultural variability), even though 2-year-olds are perfectly capable of remembering past events (side-note: memory durability increases from about a day to a year from age six months to two years). Additionally, research has shown that young children (6-8) can recall events that happened 4-6 years previously.

Given that the ability to form durable memories is in place, what governs which memories are retained? The earliest memories adults retain tend to be of events that have aroused emotions. Nothing surprising about that. More interesting is research suggesting that children can only describe memories of events using words they knew when the experience occurred — the study of young children (27, 33 or 39 months) found that, when asked about the experimental situation (involving a "magic shrinking machine") six months later, the children easily remembered how to operate the device, but were only able to describe the machine in words they knew when they first learned how to operate it.

Put another way this isn’t so surprising: our memories depend on how we encode them at the time. So two things may well be in play in early childhood amnesia: limited encoding abilities (influenced but not restricted to language) may mean the memories made are poor in quality (whatever that might mean); the development of encoding abilities means that later attempts to retrieve the memory may be far from matching the original memory. Or as one researcher put it, the format is different.

A new study about childhood amnesia looks at a different question: does the boundary move? 140 children (aged 4-13) were asked to describe their three earliest memories, and then asked again two years later (not all could provide as many as three early memories; the likelihood improved with age).

While more than a third of the 10- to 13-year-olds described the same memory as their very earliest on both occasions, children between 4 and 7 at the first interview showed very little overlap between the memories (only 2 of the 27 4-5 year-olds, and 3 of the 23 6-7 year-olds). There was a clear difference between the overlap seen in this youngest group (4-7) and the oldest (10-13), with the in-between group (8-9) being placed squarely between the two (20.7% compared to 10% and 36%).

Moreover, children under 8 at the first interview mostly had no overlap between any of the memories they provided at the two interviews, while those who were at least 8 years old did. For the oldest groups (10-13), more than half of all the memories they provided were the same.

The children were also given recall cues for memories they hadn’t spontaneously recalled. That is, they were told synopses of memories belonging to both their own earlier memories, and other children’s earlier memories. Almost all of the false memories were correctly rejected (the exceptions mostly occurred with the youngest group, those initially aged 4-5). However, the youngest children didn’t recognize over a third of their own memories, while almost all the oldest children’s memories were recognized (90% by 8-11 year-olds; all but one by 12-13 year-olds). Their age at the time of the event didn’t seem to affect the oldest or the very youngest groups, but 6-9 year-olds were more likely to recall after cuing events that happened at least a year later than those events that weren’t recalled after cuing.

In general, the earliest memories were several months later at the follow-up than they had been previously. The average age at the time of the earliest memory was 32 months, and 39.6 months on the follow-up interview. This shift in time occurred across all ages. Moreover, for the very earliest memory, the time-shift was even greater: a whole year.

In connection with the earlier study I mentioned, regarding the importance of language and encoding, it is worth noting that by and large, when the same memories were recalled, the same amount of information was recalled.

There was no difference between the genders.

The findings don’t rule out theories of the role of language. It seems clear to me that more than one thing is going on in childhood amnesia. These findings bear on another aspect: the forgetting curve.

It has been suggested that forgetting in children reflects a different function than forgetting in adults. Forgetting in adults matches a power function, reflecting the fact that forgetting slows over time (as is often quoted, most forgetting occurs in the first 24 hours; the longer you remember something, the more likely you are to remember it forever). However, there is some evidence that forgetting in children is best modeled in an exponential function, reflecting the continued vulnerability of memories. It seems they are not being consolidated in the way adults’ memories are. This may be because children don’t yet have the cognitive structures in place that allow them to embed new memories in a dense network.

Sleep can boost classroom performance of college students

There’s a lot of evidence that memories are consolidated during sleep, but most of it has involved skill learning. A new study extends the findings to complex declarative information — specifically, information from a lecture on microeconomics.

The study involved 102 university undergraduates who had never taken an economics course. In the morning or evening they completed an introductory, virtual lecture that taught them about concepts and problems related to supply and demand microeconomics. They were then tested on the material either immediately, after a 12-hour period that included sleep, after 12 hours without sleep, or after one week. The test included both basic problems that they had been trained to solve, and "transfer" problems that required them to extend their knowledge to novel, but related, problems.

Performance was better for those who slept, and this was especially so for the novel, 'transfer' integration problems.

Rule-learning task also benefits from sleep

Another complex cognitive task was investigated in a study of 54 college undergraduates who were taught to play a card game for rewards of play money in which wins and losses for various card decks mimic casino gambling (the Iowa Gambling Task is typically used to assess frontal lobe function). Those who had a normal night’s sleep as part of the study drew from decks that gave them the greatest winnings four times more often than those who spent the 12-hour break awake, and they better understood the underlying rules of the game.

The students were given a brief morning or afternoon preview of the gambling task (too brief to learn the underlying rule). They returned twelve hours later (i.e., either after a normal night’s sleep, or after a day of their usual activities), when they played the full gambling task for long enough to learn the rules. Those who got to sleep between the two sessions played better and showed a better understanding of the rules when questioned.

To assure that time of day didn’t explain the different performance, two groups of 17 and 21 subjects carried out both the preview and the full task either in the morning or the evening. Time of day made no difference.

Sleep problems may be a link between perceived racism and poor health

Analysis of data from the 2006 Behavioral Risk Factor Surveillance System, involving 7,093 people in Michigan and Wisconsin, suggests that sleep deprivation may be one mediator of the oft-reported association between discrimination and poorer cognitive performance.

The survey asked the question: "Within the past 12 months when seeking health care, do you feel your experiences were worse than, the same as, or better than for people of other races?" Taking this as an index of perceived racism, and comparing it with reports of sleep disturbance (difficulty sleeping at least six nights in the past two weeks), the study found that individuals who perceived racial discrimination were significantly more likely to experience sleep difficulties, even after allowing for socioeconomic factors and depression. Risk of sleep disturbance was nearly doubled in those who perceived themselves as discriminated against, and although this was reduced after depression was taken into account, it remained significant.

Sleep problems more prevalent than expected in urban minority children

Ten families also underwent sleep monitoring at home for five to seven days. All children who completed actigraphy monitoring had shortened sleep duration, with an average sleep duration of 8 hours, significantly less than the 10 to 11 hours recommended for children in this age group.

It’s worth noting that parents consistently overestimated sleep duration. Although very aware of bedtime and wake time, parents are less aware of time spent awake during the night.

(Also note that the figures I quote are taken from the conference abstract, which differ from those quoted in the press release.)

Rocking really does help sleep

If you or your loved one is having troubles getting to sleep, you might like to note an intriguing little study involving 12 healthy males (aged 22-38, and good sleepers). The men twice took a 45-minute afternoon nap on a bed that could slowly rock. On one occasion, it was still; on the other, it rocked. Rocking brought about faster sleep, faster transition to deeper sleep, and increased slow oscillations and sleep spindles (hallmarks of deep sleep). All these results were evident in every participant.

Sleep helps long-term memory in two ways

A fruit fly study points to two dominant theories of sleep being correct. The two theories are (a) that synapses are pruned during sleep, ensuring that only the strongest connections survive (synaptic homeostasis), and (b) that memories are replayed and consolidated during sleep, so that some connections are reactivated and thus made stronger (memory consolidation).

The experiment was made possible by the development of a new strain of fruit fly that can be induced to fall asleep when temperatures rise. The synaptic homeostasis model was supported when flies were placed in socially enriched environments, then either induced to sleep or not, before being taught a courtship ritual. Those that slept developed long-term memories of the ritual, while those that didn’t sleep didn’t remember it. The memory consolidation theory was supported when flies trained using a protocol designed to give them short-term memories retained a lasting memory, if sleep was induced immediately after the training.

In other words, it seems that both pruning and replaying are important for building long-term memories.

Mouse studies identify the roots of memory impairment resulting from sleep deprivation

Sleep deprivation in known to result in increased levels of adenosine in the brain, whether fruit fly or human (caffeine blocks the effects of adenosine). New mice studies now reveal the mechanism.

Mice given a drug that blocked a particular adenosine receptor in the hippocampus (the A1 receptor) failed to show the normal memory impairment evoked by sleep deprivation (being woken halfway through their normal 12-hour sleep schedule). The same results occurred if mice were genetically engineered to lack a gene involved in the production of glial transmitters (necessary to produce adenosine).

Memory was tested by the mice being allowed to explore a box with two objects, and then returned to the box on the next day, where one of the two objects had been moved. They would normally explore the moved object more than other objects, but sleep-deprived mice don’t usually react to the change, because they don’t remember where the object had been. In both these cases, the sleep-deprived mice showed no memory impairment.

Both the drugged and genetically protected mice also showed greater synaptic plasticity in the hippocampus after being sleep deprived than the untreated group.

The two groups reveal two parts of the chemical pathway involved in sleep deprivation. The genetic engineering experiment shows that the adenosine comes from glia's release of adenosine triphosphate (ATP). The drug experiment shows that the adenosine goes to the A1 receptor in the hippocampus.

The findings provide the first evidence that astrocytic ATP and adenosine A1R activity contribute to the effects of sleep deprivation on hippocampal synaptic plasticity and hippocampus-dependent memory, and suggest a new therapeutic target to reverse the cognitive deficits induced by sleep loss.

 

Scullin M, McDaniel M, Howard D, Kudelka C. 2011. Sleep and testing promote conceptual learning of classroom materials.  Presented Tuesday, June 14, in Minneapolis, Minn., at SLEEP 2011, the 25th Anniversary Meeting of the Associated Professional Sleep Societies LLC (APSS).

[2297] Pace‐Schott EF, Nave G, Morgan A, Spencer RMC. Sleep‐dependent modulation of affectively guided decision‐making. Journal of Sleep Research [Internet]. Submitted . Available from: http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2869.2011.00921.x/abstract

Grandner MA, Hale L, Jackson NJ, Patel NP, Gooneratne N, Troxel WM. 2011. Sleep disturbance and daytime fatigue associated with perceived racial discrimination. Presented Tuesday, June 14, in Minneapolis, Minn., at SLEEP 2011, the 25th Anniversary Meeting of the Associated Professional Sleep Societies LLC (APSS).

Sheares, B.J., Dorsey, K.B., Lamm, C.I., Wei, Y., Kattan, M., Mellins, R.B. & Evans, D. 2011. Sleep Problems In Urban Minority Children May Be More Prevalent Than Previously Recognized. Presented at the ATS 2011 International Conference in Denver.

[2330] Bayer L, Constantinescu I, Perrig S, Vienne J, Vidal P-P, Mühlethaler M, Schwartz S. Rocking synchronizes brain waves during a short nap. Current Biology [Internet]. 2011 ;21(12):R461-R462 - R461-R462. Available from: http://www.cell.com/current-biology/fulltext/S0960-9822%2811%2900539-2

[2331] Donlea JM, Thimgan MS, Suzuki Y, Gottschalk L, Shaw PJ. Inducing Sleep by Remote Control Facilitates Memory Consolidation in Drosophila. Science [Internet]. 2011 ;332(6037):1571 - 1576. Available from: http://www.sciencemag.org/content/332/6037/1571.abstract

[2287] Florian C, Vecsey CG, Halassa MM, Haydon PG, Abel T. Astrocyte-Derived Adenosine and A1 Receptor Activity Contribute to Sleep Loss-Induced Deficits in Hippocampal Synaptic Plasticity and Memory in Mice. The Journal of Neuroscience [Internet]. 2011 ;31(19):6956 - 6962. Available from: http://www.jneurosci.org/content/31/19/6956.abstract

Sleep can boost classroom performance of college students http://www.eurekalert.org/pub_releases/2011-06/aaos-scb060611.php Rule-learning task also benefits from sleep http://medicalxpress.com/news/2011-05-excellent-science-based-advice.html Sleep problems may be a link between perceived racism and poor health http://medicalxpress.com/news/2011-06-problems-link-racism-poor-health.html Sleep problems more prevalent than expected in urban minority children http://medicalxpress.com/news/2011-05-problems-prevalent-urban-minority-... Rocking really does help sleep http://www.scientificamerican.com/podcast/episode.cfm?id=rocking-increas... Sleep helps long-term memory in two ways http://the-scientist.com/2011/06/23/sleep-on-it/ Mouse studies identify the roots of memory impairment resulting from sleep deprivation http://www.eurekalert.org/pub_releases/2011-05/uop-pri051711.php

Two experiments involving a total of 191 volunteers have investigated the parameters of sleep’s effect on learning. In the first experiment, people learned 40 pairs of words, while in the second experiment, subjects played a card game matching pictures of animals and objects, and also practiced sequences of finger taps. In both groups, half the volunteers were told immediately following the tasks that they would be tested in 10 hours. Some of the participants slept during this time.

As expected, those that slept performed better on the tests (all of them: word recall, visuospatial, and procedural motor memory), but the really interesting bit is that it turned out it was only the people who slept who also knew a test was coming that had improved memory recall. These people showed greater brain activity during deep or "slow wave" sleep, and for these people only, the greater the activity during slow-wave sleep, the better their recall.

Those who didn’t sleep, however, were unaffected by whether they knew there would be a test or not.

Of course, this doesn’t mean you never remember things you don’t intend or want to remember! There is more than one process going on in the encoding and storing of our memories. However, it does confirm the importance of intention, and cast light perhaps on some of your learning failures.

Given all the research showing the importance of sleep for consolidating memories, it should come as no great surprise that the reverse is also true: depriving yourself of sleep could help you forget experiences you would prefer not to remember.

In the study, 28 student volunteers were shown 14 short video clips, half of which showed safe driving down a city street, and half showed the car being involved in a nasty crash. Half of the volunteers were then deprived of sleep while the other half received a normal night's sleep. The next day, they were shown pictures and asked to indicate whether they had appeared in the clips they had seen. They were also asked to rate the fear evoked by the image, and their physiological responses measured. They were tested again 3 and 10 days later.

While there was no difference between the two groups in picture recognition, the control group rated the images from the crash videos as fearful, and these responses generalized over time to the other images. However, those who were sleep deprived showed such reactions only on the first day.

The finding suggests a possible therapy for PTSD or other anxiety disorders.

The role of sleep in consolidating memory is now well-established, but recent research suggests that sleep also reorganizes memories, picking out the emotional details and reconfiguring the memories to help you produce new and creative ideas. In an experiment in which participants were shown scenes of negative or neutral objects at either 9am or 9pm and tested 12 hours later, those tested on the same day tended to forget the negative scenes entirely, while those who had a night’s sleep tended to remember the negative objects but not their neutral backgrounds.

Follow-up experiments showed the same selective consolidation of emotional elements to a lesser degree after a 90-minute daytime nap, and to a greater degree after a 24-hour or even several-month delay (as long as sleep directly followed encoding).

These findings suggest that processes that occur during sleep increase the likelihood that our emotional responses to experiences will become central to our memories of them. Moreover, additional nights of sleep may continue to modify the memory.

In a different approach, another recent study has found that when volunteers were taught new words in the evening, then tested immediately, before spending the night in the sleep lab and being retested in the morning, they could remember more words in the morning than they did immediately after learning them, and they could recognize them faster. In comparison, a control group who were trained in the morning and re-tested in the evening showed no such improvement on the second test.

Deep sleep (slow-wave sleep) rather than rapid eye movement (REM) sleep or light sleep appeared to be the important phase for strengthening the new memories. Moreover, those who experienced more sleep spindles overnight were more successful in connecting the new words to the rest of the words in their mental lexicon, suggesting that the new words were communicated from the hippocampus to the neocortex during sleep. Sleep spindles are brief but intense bursts of brain activity that reflect information transfer between the hippocampus and the neocortex.

The findings confirm the role of sleep in reorganizing new memories, and demonstrate the importance of spindle activity in the process.

Taken together, these studies point to sleep being more important to memory than has been thought. The past decade has seen a wealth of studies establishing the role of sleep in consolidating procedural (skill) memory, but these findings demonstrate a deeper, wider, and more ongoing process. The findings also emphasize the malleability of memory, and the extent to which they are constructed (not copied) and reconstructed.

A new study explains why variable practice improves your memory of most skills better than practice focused on a single task. The study compared skill learning between those asked to practice one particular challenging arm movement, and those who practiced the movement with other related tasks in a variable practice structure. Using magnetic stimulation applied to different parts of the brain after training (which interferes with memory consolidation), it was found that interference to the dorsolateral prefrontal cortex, but not to the primary motor cortex, affected skill learning for those engaged in variable practice, whereas interference to the motor cortex, but not to the prefrontal cortex, affected learning in those engaged in constant practice.

These findings indicate that variable practice involves working memory (which happens in the prefrontal cortex) rather than motor memory, and that the need to re-engage with the task each time underlies the better learning produced by variable practice (which involves repeatedly switching between tasks). The experiment also helps set a time frame for this consolidation — interference four hours after training had no effect.

It is now well established that memories are consolidated during sleep. Now a new study has found that restful periods while you are awake are also times when consolidation can occur. The imaging study revealed that during resting (allowed to think about anything), there was correlated activity between the hippocampus and part of the lateral occipital complex. This activity was associated with improved memory for the previous experience. Moreover, the degree of activity correlated with how well it was remembered. You can watch a 4 ½ minute video where the researchers explain their study at http://www.cell.com/neuron/abstract/S0896-6273%2810%2900006-1

Tambini, A., Ketz, N. & Davach, L. 2010. Enhanced Brain Correlations during Rest Are Related to Memory for Recent Experiences. Neuron, 65 (2), 280-290.

Following on from research showing that pulling an all-nighter decreases the ability to cram in new facts by nearly 40%, a study involving 39 young adults has found that those given a 90-minute nap in the early afternoon, after being subjected to a rigorous learning task, did markedly better at a later round of learning exercises, compared to those who remained awake throughout the day. The former group actually improved in their capacity to learn, while the latter became worse at learning. The findings reinforce the hypothesis that sleep is needed to clear the brain's short-term memory storage and make room for new information. Moreover, this refreshing of memory capacity was related to Stage 2 non-REM sleep (an intermediate stage between deep sleep and the REM dream stage).

The preliminary findings were presented February 21, at the annual meeting of the American Association of the Advancement of Science (AAAS) in San Diego, Calif.

A number of studies have shown the benefits of sleep for consolidating motor learning. A new study extends this research to a more complex motor task: "Guitar Hero III", a popular video game. There was significantly greater improvement after a night’s sleep (average 68% in performance accuracy vs 63% for students who learnt the task in the morning and were tested in the evening), and a significant correlation between sleep duration and the amount of improvement.

Higginson, C.D. et al. 2010. So you wanna be a rock star? Sleep on it. Presented at SLEEP 2010, the 24th annual meeting of the Associated Professional Sleep Societies LLC, in San Antonio, Texas.

Although research has so far been confined to mouse studies, researchers are optimistic about the promise of histone deacetylase inhibitors in reversing age-related memory loss — both normal decline, and the far more dramatic loss produced by Alzheimer’s. The latest study reveals that memory impairment in the aging mouse is associated with altered hippocampal chromatin plasticity, specifically with the failure of histone H4 lysine 12 acetylation, leading to a failure to initiate the gene expression program associated with memory consolidation. Restoring this acetylation leads to the recovery of cognitive abilities.

Several reports have come out in recent years on how recent events replay in the hippocampus, a process thought to be crucial for creating long-term memories. Now a rat study suggests that these replays are not merely echoes of past events, but a dynamic process aimed at improving decision-making. Rather than being solely replays of recent or frequent paths through the maze, the replays were often paths that the rats had rarely taken or, in some cases, had never taken, as if the rats were trying to build maps to help them make better navigation decisions.

It’s now well established that sleep plays an important role in memory and learning. Now a new study suggests that dreams also play a part in consolidating memories. The study involved 99 subjects training for an hour on a computerized maze task, and then either taking a 90-minute nap or engaging in quiet activities. Intermittently, subjects were asked to describe what was going through their minds, or what they had been dreaming about. Five hours after training, the subjects were retested on the maze task. While those who hadn’t slept showed no improvement on the second test (even if they had reported thinking about the maze during their rest period), and those nappers who reported no maze-related dreams also showed little improvement, those who dreamed about the task showed dramatic improvement. Those who dreamed about the task were not more interested or motivated, but they were more likely to have performed relatively poorly during training — suggesting that the sleeping brain is more likely to focus on areas of greatest need. The researchers believe not that dreaming causes you to remember, but that dreaming is a marker that the brain is working on a problem at many levels — perhaps reflecting the brain's attempt to find useful associations.

Older news items (pre-2010) brought over from the old website

Reactivating single memory does not affect associated memories

Recent studies have indicated that consolidated memories can in fact be manipulated when reactivated. This process, often referred to as reconsolidation, has been proposed as a possible way of treating traumatic memories. But one concern is that reactivating and disrupting a single memory may also affect other associated memories. A new rat study has found that only those memories directly reactivated are vulnerable, not those associated to them.

Debiec, J., Doyère, V., Nader, K. & LeDoux, J.E. 2006. Directly reactivated, but not indirectly reactivated, memories undergo reconsolidation in the amygdala. Proceedings of the National Academy of Sciences, 103 (9), 3428-3433.

http://www.eurekalert.org/pub_releases/2006-02/nyu-nrs021306.php

Protein found to inhibit conversion to long-term memory

In a study using genetically engineered mice, researchers have found that mice without a protein called GCN2 acquire new information that doesn’t fade as easily as it does in normal mice. After weak training on the Morris water maze, their spatial memory was enhanced, but it was impaired after more intense training. The researchers concluded that GCN2 may prevent new information from being stored in long-term memory, suggesting the conversion of new information into long-term memory requires both the activation of molecules that facilitate memory storage, and the silencing of proteins such as GCN2 that inhibit memory storage.

Wingfield, A., Tun, P.A. & McCoy, S.L. 2005. Hearing Loss in Older Adulthood: What It Is and How It Interacts With Cognitive Performance. Current Directions in Psychological Science, 14(3), 144-148.

http://www.eurekalert.org/pub_releases/2005-08/uom-mrp082905.php

New theory challenges current view of how brain stores long-term memory

The current view of long-term memory storage is that, at the molecular level, new proteins are manufactured (a process known as translation), and these newly synthesized proteins subsequently stabilize the changes underlying the memory. Thus, every new memory results in a permanent representation in the brain. A new theory of memory storage suggests instead that there is no permanent representation. Rather, memories are copied across many different brain networks. The advantage is that it is a highly flexible system, enabling rapid retrieval even of infrequent elements.
The theory suggests that the brain stores long-term memory by rapidly changing the shape of proteins already present at those synapses activated by learning. The theory explains a number of phenomena that are not properly answered by the existing theory. The theory doesn’t disagree with the view that it is the synapse that is modified in response to learning; the disagreement concerns how that synaptic modification occurs. Current theory says it is brought about by recently synthesized proteins; the new theory suggests that learning leads to a post-synthesis (post-translational) synaptic protein modification that results in changes to the shape, activity and/or location of existing synaptic proteins. It is suggested that long-term memory storage relies on a positive-feedback rehearsal system that continually updates or fine-tunes post-translational modification of previously modified synaptic proteins, thus allowing for the continual modifications of memories.

Routtenberg, A. & Rekart, J.L. 2005. Post-translational protein modification as the substrate for long-lasting memory. Trends in Neurosciences, 28 (1), 12-19.

http://www.eurekalert.org/pub_releases/2005-01/nu-ntc011405.php
http://www.sciencedirect.com/science/journal/01662236

Brain circuit crucial for memory consolidation identified

A rat study has identified a circuit in the brain that appears crucial in converting short-term memories into long-term memories. The circuit is the temporoammonic (TA) projection, which directly links the CA1 region of the hippocampus and the neocortex.

Remondes, M. &Schuman, E.M. 2004. Role for a cortical input to hippocampal area CA1 in the consolidation of a long-term memory.Nature, 431, 699 - 703.

http://www.eurekalert.org/pub_releases/2004-10/hhmi-bcm100604.php

Confirmation that a memory code is held in many different regions

Mapping of brain activity patterns has cast new light on how our memories integrate sights, smells, tastes, and sounds. Previous research has shown that the visual and auditory brain regions are activated during memories of pictures and sounds. A new imaging study investigated taste and smell. Volunteers were presented with random combinations of an odor and the image of an object and asked to imagine a link or story that associated the two. They were then presented with a series of both previously seen images and new images and asked to recall whether they were viewing new or old images. It was found that the region involved in processing smells, the piriform cortex, was activated when participants saw objects previously associated with odors. On questioning, participants said they recalled the story linking image and smell, but had not tried to summon up the smell itself. These findings confirm models of memory recall in which the sensory-specific components of a memory are preserved in the sensory-related brain regions, and the hippocampus draws on those components to reconstruct a sensory-rich memory (as opposed to the complete memory being stored in one place). This allows memories to be recalled from one sensory cue.

Gottfried, J.A., Smith, A.P.R., Rugg, M.D. & Dolan, R.J. 2004. Remembrance of Odors Past: Human Olfactory Cortex in Cross-Modal Recognition Memory. Neuron, 42 (4), 687-695.

http://www.eurekalert.org/pub_releases/2004-05/cp-hoh052104.php
http://www.eurekalert.org/pub_releases/2004-05/ucl-ros052404.php

Memories are harder to forget than recently thought

Previous rodent studies have shown that the process of encoding a memory can be blocked by the use of a protein synthesis inhibitor called anisomycin ( http://www.eurekalert.org/pub_releases/2000-08/NYU-Nnfl-1508100.htm). Experiments with anisomycin helped lead to the acceptance of a theory in which a learned behavior is consolidated into a stored form and that then enters a 'labile' - or adaptable - state when it is recalled. According to these previous studies, the act of putting a labile memory back into storage involves a reconsolidation process identical to the one used to store the memory initially. Indeed, experiments showed that anisomycin could make a mouse forget a memory if it were given anisomycin directly after remembering an event. In a new study, however, researchers have showed that disruption of a "re-remembered" memory was not permanent. Mice demonstrated that they could remember the original learned behavior 21 days later. This research thus casts doubt on the concept of “reconsolidation”, or at least demonstrates that we still have much to learn about this process.

Lattal, K.M. & Abel, T. 2004. Behavioral impairments caused by injections of the protein synthesis inhibitor anisomycin after contextual retrieval reverse with time. PNAS, 101, 4667-4672

http://www.eurekalert.org/pub_releases/2004-03/uop-mah031504.php

Another step in understanding how memories are formed

The electrical activity of individual neurons in the brains of two adult rhesus monkeys was monitored while the monkeys played a memory-based video game in which an image pops up on the computer screen with four targets—white dots—superimposed on it. The monkeys’ task was to learn which target on which image was associated with a reward (a drop of their favorite fruit juice). Dramatic changes in the activity of some hippocampal neurons, which the scientists called "changing cells", paralleled their learning, indicating that these neurons are involved in the initial formation of new associative memories. In some of the cells, activity continued after the animal had learned the association, suggesting that these cells may participate in the eventual storage of the associations in long-term memory.

Wirth, S., Yanike, M., Frank, L.M., Smith, A.C., Brown, E.N. & Suzuki, W.A. 2003. Single Neurons in the Monkey Hippocampus and Learning of New Associations. Science, 300, 1578-1581.

http://www.eurekalert.org/pub_releases/2003-06/nyu-fir060503.php

More details about how memories are formed in the hippocampus

We know how important the hippocampus is in forming memories, but now, using newly developed imaging techniques, researchers have managed to observe how activity patterns within specific substructures of the hippocampus change during learning. The study identified areas within the hippocampus (the cornu ammonis and the dentate gyrus) as highly active during encoding of face-name pairs. This activity decreased as the associations were learned. A different area of the hippocampus (the subiculum) was active primarily during the retrieval of the face-name associations. Activity in the subiculum also decreased as retrieval became more practiced.

Zeineh, M.M., Engel, S.A., Thompson, P.M. & Bookheimer, S.Y. 2003. Dynamics of the Hippocampus During Encoding and Retrieval of Face-Name Pairs, Science, 299, 577-580.

http://www.eurekalert.org/pub_releases/2003-01/uoc--som012303.php

Memories may be hard to find when thalamus fails to synchronize rhythms

Memory codes - the representation of an object or experience in memory - are patterns of connected neurons. The neurons that are linked are not necessarily in the same region of the brain. Exciting new research has measured the electrical rhythms that parts of the brain use to communicate with each other and found that the thalamus regulates these rhythms. "Memory appears to be a constructive process in combining the features of the items to be remembered rather than simply remembering each object as a whole form. The thalamus seems to direct or modulate the brain's activity so that the regions needed for memory are connected." The authors suggest that tips of the tongue experiences (when only part of a memory is recalled) may occur when the rhythms don't synchronize with the regions properly.

Slotnick, S.D., Moo, L.R., Kraut, M.A., Lesser, R.P. & Hart, J. Jr. 2002. Interactions between thalamic and cortical rhythms during semantic memory recall in human. Proc. Natl. Acad. Sci. U.S.A., 99, 6440-6443.

http://www.eurekalert.org/pub_releases/2002-05/uoaf-mi050902.php

Pictures show how nerve cells form connections to store memories

Scientists at the University of California, San Diego have produced dramatic images of brain cells forming temporary and permanent connections in response to various stimuli, illustrating for the first time the structural changes between neurons in the brain that, many scientists have long believed, take place when we store short-term and long-term memories.

Colicos, M.A., Collins, B.E., Sailor, M.J. & Goda, Y. 2001. Remodeling of Synaptic Actin Induced by Photoconductive Stimulation. Cell, 107 (5), 605-616.

http://ucsdnews.ucsd.edu/newsrel/science/mccell.htm

The neural bases of effective encoding

Failure to remember experiences often occurs not because the memory is hard to retrieve, but because it was not properly encoded in the first place. Imaging studies are beginning to give us a better idea of the neurocognitive processes that lead to more effective encoding.

Wagner, A.D. & Davachi, L. 2001. Cognitive neuroscience: Forgetting of things past. Current Biology, 11, R964-R967.

http://tinyurl.com/i87x

Imaging study confirms role of medial temporal lobe in memory consolidation

Lesions in the medial temporal lobe (MTL) typically produce amnesia characterized by the disproportionate loss of recently acquired memories. Such memory loss has been interpreted as evidence for a memory consolidation process guided by the MTL. A recent imaging study confirms this view by showing temporally graded changes in MTL activity in healthy older adults taking a famous faces remote memory test. Evidence for such temporally graded change in the hippocampal formation was mixed, suggesting it may participate only in consolidation processes lasting a few years. The entorhinal cortex (also part of the MTL) was associated with temporally graded changes extending up to 20 years, suggesting that it is the entorhinal cortex, rather than the hippocampal formation, that participates in memory consolidation over decades. The entorhinal cortex is damaged in the early stages of Alzheimer’s disease.

Haist, F., Gore, J.B. & Mao, H. 2001. Consolidation of human memory over decades revealed by functional magnetic resonance imaging. Nature neuroscience, 4 (11), 1139-1145.

http://www.nature.com/neurolink/v4/n11/abs/nn739.html

Crucial enzyme for consolidating long-term memories

Susumu Tonegawa and colleagues at the Massachusetts Institute of Technology and the Vollum Institute have released the first of a series of studies illuminating how short-term memories are turned into long-term ones via consolidation, how different types of learning occurs in unexpected ways, and how memory recall occurs. In this first study, the researchers eliminated the function of a single enzyme in a restricted memory-related region in the brains of mice, and thus showed that the enzyme is important in consolidating long-term memories. While this enzyme (calcium-calmodulin dependent kinase (CaMKIV)), has been implicated in the process of establishing long-term memories, previous research has been inconclusive because the techniques used to knock out the enzyme were so global. A series of behavioral experiments led the researchers to conclude that the CaMKIV pathway was primarily involved in memory consolidation and retention. However, memory consolidation was not completely extinguished, suggesting that there may be parallel signaling pathways involved in consolidation, or that there may have been incomplete knockout of CaMKIV activity.

Kang, H., Sun, L.D., Atkins, C.M., Soderling, T.R., Wilson, M.A. & Tonegawa, S. (2001). An Important Role of Neural Activity-Dependent CaMKIV Signaling in the Consolidation of Long-Term Memory. Cell, 106, 771-783.

http://www.eurekalert.org/pub_releases/2001-09/hhmi-rfe092001.php

Protein that allows information to be converted from short-term into lifelong memories identified

Scientists from UCLA and Johns Hopkins University have taken the first step in discovering how the brain, at the molecular and cellular level, converts short-term memories into permanent ones."Memories last different amounts of time," Frankland said. "You might remember a phone number for just a few minutes, for example, while certain childhood events will be remembered for a lifetime. Our study reveals the role of a protein that must be present in the cortex for information to be converted from short-term into lifelong memories."

Frankland, P.W., O'Brien, C., Ohno, M., Kirkwood, A. & Silva, A.J. 2001. α-CaMKII-dependent plasticity in the cortex is required for permanent memory. Nature, 411, 309-313.

http://www.eurekalert.org/pub_releases/2001-05/UNKN-BrfU-1505101.php

Specific molecule that helps brain reorganize in the face of new experiences targeted

For the first time scientists have been able to pinpoint a specific molecule that assists the brain to reorganize in the face of new experiences. Neuroscientists at the University of Rochester Medical Center found that genetically engineered mice that were challenged with new tasks improved their learning abilities. The team then boosted the amount of the molecule, nerve growth factor (NGF), in their brains, and found that the mice learned to run unfamiliar mazes more quickly than their unmodified counterparts.

The study was published in the Proceedings of the National Academy of Science.

http://www.eurekalert.org/pub_releases/2000-12/UoR-Simt-2612100.php