Working memory has more layers than thought

April, 2011

A new study provides further support for a three-tier model of working memory, where the core only holds one item, the next layer holds up to three, and further items can be passively held ready.

Readers of my books and articles will know that working memory is something I get quite excited about. It’s hard to understate the importance of working memory in our lives. Now a new study tells us that working memory is in fact made up of three areas: a core focusing on one active item, a surrounding area holding at least three more active items (called the outer store), and a wider region containing passive items that have been tagged for later retrieval. Moreover, the core region (the “focus of attention”) has three roles (one more than thought) — it not only directs attention to an item and retrieves it, but it also updates it later, if required.

In two experiments, 49 participants were presented with up to four types of colored shapes on a computer screen, with particular types (eg a red square) confined to a particular column. Each colored shape was displayed in sequence at the beginning with a number from 1 to 4, and then instances of the shapes appeared sequentially one by one. The participants’ task was to keep a count of each shape. Different sequences involved only one shape, or two, three, or four shapes. Participants controlled how quickly the shapes appeared.

Unsurprisingly, participants were slower and less accurate as the set size (number of shape types) increased. There was a significant jump in response time when the set-size increased from one to two, and a steady increase in RT and decline in accuracy as set-size increased from 2 to 4. Responses were also notably slower when the stimulus changed and they had to change their focus from one type of shape to another (this is called the switch cost). Moreover, this switch cost increased linearly with set-size, at a rate of about 240ms/item.

Without getting into all the ins and outs of this experiment and the ones leading up to it, what the findings all point to is a picture of working memory in which:

  • the focus contains only one item,
  • the area outside the focus contains up to three items,
  • this outer store has to be searched before the item can be retrieved,
  • more recent items in the outer store are not found any more quickly than older items in the outer store,
  • focus-switch costs increase as a direct function of the number of items in the outer store,
  • there is (as earlier theorized) a third level of working memory, containing passive items, that is quite separate from the two areas of active storage,
  • that the number of passive items does not influence either response time or accuracy for recalling active items.

It is still unclear whether the passive third layer is really a part of working memory, or part of long-term memory.

The findings do point to the need to use active loads rather than passive ones, when conducting experiments that manipulate cognitive load (for example, requiring subjects to frequently update items in working memory, rather than simply hold some items in memory while carrying out another task).

Reference: 

Related News

A small study shows how those on the road to Alzheimer’s show early semantic problems long before memory problems arise, and that such problems can affect daily life.

In my last report, I discussed a finding that intensive foreign language learning ‘grew’ the size of certain brain regions. This growth reflects gray matter increase.

A small Swedish brain imaging study adds to the evidence for the cognitive benefits of learning a new language by investigating the brain changes in students undergoing a highly intensive language course.

Stress is a major cause of workplace accidents, and most of us are only too familiar with the effects of acute stress on our thinking. However, although the cognitive effects are only too clear, research has had little understanding of how stress has this effect.

We know that stress has a complicated relationship with learning, but in general its effect is negative, and part of that is due to stress producing anxious thoughts that clog up

Memory problems in those with mild cognitive impairment may begin with problems in visual discrimination and vulnerability to interference — a hopeful discovery in that interventions to improve discriminability and reduce interference may have a flow-on effect to cognition.

Here’s an exciting little study, implying as it does that one particular aspect of information processing underlies much of the cognitive decline in older adults, and that this can be improved through training.

I’ve reported, often, on the evidence that multitasking is a problem, something we’re not really designed to do well (with the exception of a few fortunate individuals), and that the problem is r

What underlies differences in fluid intelligence? How are smart brains different from those that are merely ‘average’?

Back in 2009, I reported briefly on a large Norwegian study that found that older adults who consumed chocolate, wine, and tea performed significantly better on cognitive tests.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.