Why older adults lose working memory capacity

The root of age-related cognitive decline may lie in a reduced ability to ignore distractors. A new study indicates that older adults put more effort into focusing during encoding, in order to compensate for a reduced ability to hold information in working memory. The finding suggests a multi-pronged approach to improving cognitive ability in older adults.

I've reported before on the idea that the drop in working memory capacity commonly seen in old age is related to the equally typical increase in distractability. Studies of brain activity have also indicated that lower WMC is correlated with greater storage of distractor information. So those with higher WMC, it's thought, are better at filtering out distraction and focusing only on the pertinent information. Older adults may show a reduced WMC, therefore, because their ability to ignore distraction and irrelevancies has declined.

Why does that happen?

A new, large-scale study using a smartphone game suggests that the root cause is a change in the way we hold items in working memory.

The study involved 29,631 people aged 18—69, who played a smartphone game in which they had to remember the positions of an increasing number of red circles. Yellow circles, which had to be ignored, could also appear — either at the same time as the red circles, or after them. Data from this game revealed both WMC (how many red circle locations the individual could remember), and distractability (how many red circle locations they could remember in the face of irrelevant yellow circles).

Now this game isn't simply a way of measuring WMC. It enables us to make an interesting distinction based on the timing of the distraction. If the yellow circles appeared at the same time as the red ones, they are providing distraction when you are trying to encode the information. If they appear afterward, the distraction occurs when you are trying to maintain the information in working memory.

Now it would seem commonsensical that distraction at the time of encoding must be the main problem, but the fascinating finding of this study is that it was distraction during the delay (while the information is being maintained in working memory) that was the greater problem. And it was this distraction that became more and more marked with increasing age.

The study is a follow-up to a smaller 2014 study that included two experiments: a lab experiment involving 21 young adults, and data from the same smartphone game involving only the younger cohort (18-29 years; 3247 participants).

This study demonstrated that distraction during encoding and distraction during delay were independent contributory factors to WMC, suggesting that separate mechanisms are involved in filtering out distraction at encoding and maintenance.

Interestingly, analysis of the data from the smartphone game did indicate some correlation between the two in that context. One reason may be that participants in the smartphone game were exposed to higher load trials (the lab study kept WM load constant); another might be that they were in more distracting environments.

While in general researchers have till now assumed that the two processes are not distinct, it has been theorized that distractor filtering at encoding may involve a 'selective gating mechanism', while filtering during WM maintenance may involve a shutting down of perception. The former has been linked to a gating mechanism in the striatum in the basal ganglia, while the latter has been linked to an increase in alpha waves in the frontal cortex, specifically, the left middle frontal gyrus. The dorsolateral prefrontal cortex may also be involved in distractor filtering at encoding.

To return to the more recent study:

  • there was a significant decrease in WMC with increasing age in all conditions (no distraction; encoding distraction; delay distraction)
  • for older adults, the decrease in WMC was greatest in the delay distraction condition
  • when 'distraction cost' was calculated (((ND score − (ED or DD score))/ND score) × 100), there was a significant correlation between delay distraction cost and age, but not between encoding distraction cost and age
  • for older adults, performance in the encoding distraction condition was better predicted by performance in the no distraction condition than it was among the younger groups
  • this correlation was significantly different between the 30-39 age group and the 40-49 age group, between the 40s and the 50s, and between the 50s and the 60s — showing that this is a progressive change
  • older adults with a higher delay distraction cost (ie, those more affected by distractors during delay) also showed a significantly greater correlation between their no-distraction performance and encoding-distraction performance.

All of this suggests that older adults are focusing more attention during attention even when there is no distraction, and they are doing so to compensate for their reduced ability to maintain information in working memory.

This suggests several approaches to improving older adults' ability to cope:

  • use perceptual discrimination training to help improve WMC
  • make working memory training more about learning to ignore certain types of distraction
  • reduce distraction — modify daily tasks to make them more "older adult friendly"
  • (my own speculation) use meditation training to improve frontal alpha rhythms.

You can participate in the game yourself, at http://thegreatbrainexperiment.com/

http://medicalxpress.com/news/2015-05-smartphone-reveals-older.html

AttachmentSize
Image icon wmc-game2.jpg91.32 KB

Reference: 

[3921] McNab, F., Zeidman P., Rutledge R. B., Smittenaar P., Brown H. R., Adams R. A., et al.
(2015).  Age-related changes in working memory and the ability to ignore distraction.
Proceedings of the National Academy of Sciences. 112(20), 6515 - 6518.

McNab, F., & Dolan, R. J. (2014). Dissociating distractor-filtering at encoding and during maintenance. Journal of Experimental Psychology. Human Perception and Performance, 40(3), 960–7. doi:10.1037/a0036013

Related News

Evidence is accumulating that age-related cognitive decline is rooted in three related factors: processing speed slows down (because of

Preliminary findings from a small study show that older adults (68-91), after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their

Another study looking into the urban-nature effect issue takes a different tack than those I’ve previously reported on, that look at the attention-refreshing benefits of natural environments.

An online study open to anyone, that ended up involving over 100,000 people of all ages from around the world, put participants through 12 cognitive tests, as well as questioning them about their background and lifestyle habits.

In my book on remembering intentions, I spoke of how quickly and easily your thoughts can be derailed, leading to ‘action slips’ and, in the wrong circumstances, catastrophic mistakes.

Being a woman of a certain age, I generally take notice of research into the effects of menopause on cognition.

The issue of ‘chemo-brain’ — cognitive impairment following chemotherapy — has been a controversial one.

Providing some support for the finding I recently reported — that problems with semantic knowledge in those with mild cognitive impairment (

Organophosphate pesticides are the most widely used insecticides in the world; they are also (according to WHO), one of the most hazardous pesticides to vertebrate animals.

A small study shows how those on the road to Alzheimer’s show early semantic problems long before memory problems arise, and that such problems can affect daily life.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.