Why learning gets harder as we get older

February, 2013

A mouse study shows that weakening unwanted or out-of-date connections is as important as making new connections, and that neurological changes as we age reduces our ability to weaken old connections.

A new study adds more support to the idea that the increasing difficulty in learning new information and skills that most of us experience as we age is not down to any difficulty in acquiring new information, but rests on the interference from all the old information.

Memory is about strengthening some connections and weakening others. A vital player in this process of synaptic plasticity is the NMDA receptor in the hippocampus. This glutamate receptor has two subunits (NR2A and NR2B), whose ratio changes as the brain develops. Children have higher ratios of NR2B, which lengthens the time neurons talk to each other, enabling them to make stronger connections, thus optimizing learning. After puberty, the ratio shifts, so there is more NR2A.

Of course, there are many other changes in the aging brain, so it’s been difficult to disentangle the effects of this changing ratio from other changes. This new study genetically modified mice to have more NR2A and less NR2B (reflecting the ratio typical of older humans), thus avoiding the other confounds.

To the researchers’ surprise, the mice were found to be still good at making strong connections (‘long-term potentiation’ - LTP), but instead had an impaired ability to weaken existing connections (‘long-term depression’ - LTD). This produces too much noise (bear in mind that each neuron averages 3,000 potential points of contact (i.e., synapses), and you will see the importance of turning down the noise!).

Interestingly, LTD responses were only abolished within a particular frequency range (3-5 Hz), and didn’t affect 1Hz-induced LTD (or 100Hz-induced LTP). Moreover, while the mice showed impaired long-term learning, their short-term memory was unaffected. The researchers suggest that these particular LTD responses are critical for ‘post-learning information sculpting’, which they suggest is a step (hitherto unknown) in the consolidation process. This step, they postulate, involves modifying the new information to fit in with existing networks of knowledge.

Previous work by these researchers has found that mice genetically modified to have an excess of NR2B became ‘super-learners’. Until now, the emphasis in learning and memory has always been on long-term potentiation, and the role (if any) of long-term depression has been much less clear. These results point to the importance of both these processes in sculpting learning and memory.

The findings also seem to fit in with the idea that a major cause of age-related cognitive decline is the failure to inhibit unwanted information, and confirm the importance of keeping your mind actively engaged and learning, because this ratio is also affected by experience.

Reference: 

Related News

A German study involving 1,936 older adults (50+) has found that mild cognitive impairment (

A study involving both mice and human cells adds to evidence that stress is a risk factor for Alzheimer's.

Data from 23,572 Americans from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study has revealed that those who survived a stroke went on to have significantly faster rates of cognitive decline as they aged.

Understanding a protein's role in familial Alzheimer's disease

A four-year study involving 1,502 healthy older adults (50+) has found that the frequency of negative interactions with family members (not partners or children) and friends was associated with an increased risk of developing hypertension in women (but not in men).

A study involving 44 middle-aged overweight men who consumed 70 grams of dark chocolate per day over two periods of four weeks, has found that dark chocolate helps restore flexibility to arteries while also preventing white blood cells from sticking to the walls of blood vessels.

Middle-aged Japanese men living in Japan had lower incidence of coronary artery calcification, a predictor of heart disease, than middle-aged white men living in the United States, after accounting for risk factors such as smoking, cholesterol, alcohol consumption, diabetes and high blood pressu

A new study from the Women's Health Initiative has found that calcium and vitamin D supplements after menopause can improve women's cholesterol profiles, with much of that effect tied to raising vitamin D levels.

Data from 11 different cohort studies, involving more than 600,000 people from around the world, has found that:

Two studies help explain why kidney disease increases the risk of cardiovascular diseases such as high blood pressure and vascular calcification. The mediator seems to be a hormone called FGF23, which is sensitive to the level of phosphates in the body.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.