Why diabetes is linked to cognitive impairment in older adults

January, 2012
  • The link between diabetes and cognitive impairment in older adults seems to be mediated by the release of molecules that increase inflammation, leading to constricted blood vessels, thus reduced blood flow, and finally loss of gray matter.

Why is diabetes associated with cognitive impairment and even dementia in older adults? New research pinpoints two molecules that trigger a cascade of events that end in poor blood flow and brain atrophy.

The study involved 147 older adults (average age 65), of whom 71 had type 2 diabetes and had been taking medication to manage it for at least five years. Brain scans showed that the diabetic patients had greater blood vessel constriction than the age- and sex-matched controls, and more brain atrophy. The reduction in brain tissue was most marked in the grey matter in the parietal and occipital lobes and cerebellum. Research has found that, at this age, while the average brain shrinks by about 1% annually, a diabetic brain might shrink by as much as 15%. Diabetics also had more white matter hyperintensities in the temporal, parietal and occipital lobes.

Behaviorally, the diabetics also had greater depression, slower walking, and executive dysfunction.

The reduced performance of blood vessels (greater vasoconstriction, blunted vasodilatation), and increased brain atrophy in the frontal, temporal, and parietal lobes, was associated with two adhesion molecules – sVCAM and sICAM. White matter hyperintensities were not associated with the adhesion molecules, inflammatory markers, or blood vessel changes.

It seems that the release of these molecules, probably brought about by chronic hyperglycemia and insulin resistance, produces chronic inflammation, which in turn brings about constricted blood vessels, reduced blood flow, and finally loss of neurons. The blood vessel constriction and the brain atrophy were also linked to higher glucose levels.

The findings suggest that these adhesion molecules provide two biomarkers of vascular health that could enable clinicians to recognize impending brain damage, that could then perhaps be prevented.

The findings also add weight to the growing evidence that diabetes management is crucial in preventing cognitive decline.

Reference: 

Related News

As we all know, people are living longer and obesity is at appalling levels. For both these (completely separate!) reasons, we expect to see growing rates of dementia. A new analysis using data from the long-running Framingham Heart Study offers some hope to individuals, however.

A study involving 39 older adults has found that those randomly assigned to a “high-challenge” group showed improved cognitive performance and more efficient brain activity compared with those assigned to a low-challenge group, or a control group.

Data from 2,800 participants (aged 65+) in the Advanced Cognitive Training for Independent and Vital Elderly (ACTIVE) study has revealed that one type of cognitive training benefits less-educated people more than it does the more-educated.

A study involving 266 people with mild cognitive impairment (aged 70+) has found that B vitamins are more effective in slowing cognitive decline when people have higher omega 3 levels.

Growing research has implicated infections as a factor in age-related cognitive decline, but these have been cross-sectional (comparing different individuals, who will have a number of other, possibly confounding, attributes).

Another study adds to the growing evidence that a Mediterranean diet is good for the aging brain.

A two-year study which involved metabolic testing of 50 people, suggests that Alzheimer's disease consists of three distinct subtypes, each one of which may need to be treated differently. The finding may help explain why it has been so hard to find effective treatments for the disease.

A study involving both mice and human cells adds to evidence that stress is a risk factor for Alzheimer's.

Data from 23,572 Americans from the Reasons for Geographic and Racial Differences in Stroke (REGARDS) study has revealed that those who survived a stroke went on to have significantly faster rates of cognitive decline as they aged.

A study involving 382 older adults (average age 75) followed for around five years, has found that those who don’t get enough vitamin D may experience cognitive decline at a much faster rate than people who have adequate vitamin D.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.