Sleep learning making a comeback?

August, 2012

Two new studies provide support for the judicious use of sleep learning — as a means of reactivating learning that occurred during the day.

Back when I was young, sleep learning was a popular idea. The idea was that a tape would play while you were asleep, and learning would seep into your brain effortlessly. It was particularly advocated for language learning. Subsequent research, unfortunately, rejected the idea, and gradually it has faded (although not completely). Now a new study may presage a come-back.

In the study, 16 young adults (mean age 21) learned how to ‘play’ two artificially-generated tunes by pressing four keys in time with repeating 12-item sequences of moving circles — the idea being to mimic the sort of sensorimotor integration that occurs when musicians learn to play music. They then took a 90-minute nap. During slow-wave sleep, one of the tunes was repeatedly played to them (20 times over four minutes). After the nap, participants were tested on their ability to play the tunes.

A separate group of 16 students experienced the same events, but without the playing of the tune during sleep. A third group stayed awake, during which 90-minute period they played a demanding working memory task. White noise was played in the background, and the melody was covertly embedded into it.

Consistent with the idea that sleep is particularly helpful for sensorimotor integration, and that reinstating information during sleep produces reactivation of those memories, the sequence ‘practiced’ during slow-wave sleep was remembered better than the unpracticed one. Moreover, the amount of improvement was positively correlated with the proportion of time spent in slow-wave sleep.

Among those who didn’t hear any sounds during sleep, improvement likewise correlated with the proportion of time spent in slow-wave sleep. The level of improvement for this group was intermediate to that of the practiced and unpracticed tunes in the sleep-learning group.

The findings add to growing evidence of the role of slow-wave sleep in memory consolidation. Whether the benefits for this very specific skill extend to other domains (such as language learning) remains to be seen.

However, another recent study carried out a similar procedure with object-location associations. Fifty everyday objects were associated with particular locations on a computer screen, and presented at the same time with characteristic sounds (e.g., a cat with a meow and a kettle with a whistle). The associations were learned to criterion, before participants slept for 2 hours in a MR scanner. During slow-wave sleep, auditory cues related to half the learned associations were played, as well as ‘control’ sounds that had not been played previously. Participants were tested after a short break and a shower.

A difference in brain activity was found for associated sounds and control sounds — associated sounds produced increased activation in the right parahippocampal cortex — demonstrating that even in deep sleep some sort of differential processing was going on. This region overlapped with the area involved in retrieval of the associations during the earlier, end-of-training test. Moreover, when the associated sounds were played during sleep, parahippocampal connectivity with the visual-processing regions increased.

All of this suggests that, indeed, memories are being reactivated during slow-wave sleep.

Additionally, brain activity in certain regions at the time of reactivation (mediotemporal lobe, thalamus, and cerebellum) was associated with better performance on the delayed test. That is, those who had greater activity in these regions when the associated sounds were played during slow-wave sleep remembered the associations best.

The researchers suggest that successful reactivation of memories depends on responses in the thalamus, which if activated feeds forward into the mediotemporal lobe, reinstating the memories and starting the consolidation process. The role of the cerebellum may have to do with the procedural skill component.

The findings are consistent with other research.

All of this is very exciting, but of course this is not a strategy for learning without effort! You still have to do your conscious, attentive learning. But these findings suggest that we can increase our chances of consolidating the material by replaying it during sleep. Of course, there are two practical problems with this: the material needs an auditory component, and you somehow have to replay it at the right time in your sleep cycle.

Reference: 

Related News

A largish Chinese study, involving 541 9-11-year-olds, has found that those who ate fish at least once a week slept better and had higher IQ scores, on average, than those who ate fish less frequently or not at all.

A study involving epilepsy patients who had electrodes implanted into their brain has revealed that memory

A laboratory study has found that sleeping after watching a trauma event reduced emotional distress and memories related to traumatic events. The laboratory study involved 65 women being shown a neutral and a traumatic video.

Sleep, as I have said on many occasions, helps your brain consolidate new memories. I have reported before on a number of studies showing how sleep helps the learning of various types of new information.

This sounds like pseudoscience, but it appears in Journal of Neuroscience, so … Weirdly, a rat study has found that sleeping on the side (the most common posture for humans and other animals) is the best position for efficiently removing waste from the brain.

We know sleep helps consolidate memories. Now a new study sheds light on how your sleeping brain decides what’s worth keeping.

Recent research has suggested that sleep problems might be a risk factor in developing Alzheimer’s, and in mild cognitive impairment.

Because sleep is so important for memory and learning (and gathering evidence suggests sleep problems may play a significant role in age-related cognitive impairment), I thought I’d make quick note of a recent review bringing together all research on the immediate effects of alcohol on the sleep

Back in 2010, I briefly reported on a study suggesting that a few minutes of ‘quiet time’ could help you consolidate new information. A new study provides more support for this idea.

We know that we remember more 12 hours after learning if we have slept during that 12 hours rather than been awake throughout, but is this because sleep is actively helping us remember, or because being awake makes it harder to remember (because of interference and over-writing from other experi

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.