Possible treatment for working memory decline with age

September, 2011

A study has successfully countered reduced activity in the prefrontal cortex seen in older monkeys. Clinical trials are now investigating whether the drug can improve working memory in older humans.

A study comparing activity in the dorsolateral prefrontal cortex in young, middle-aged and aged macaque monkeys as they performed a spatial working memory task has found that while neurons of the young monkeys maintained a high rate of firing during the task, neurons in older animals showed slower firing rates. The decline began in middle age.

Neuron activity was recorded in a particular area of the dorsolateral prefrontal cortex that is most important for visuospatial working memory. Some neurons only fired when the cue was presented (28 CUE cells), but most were active during the delay period as well as the cue and response periods (273 DELAY neurons). Persistent firing during the delay period is of particular interest, as it is required to maintain information in working memory. Many DELAY neurons increased their activity when the preferred spatial location was being remembered.

While the activity of the CUE cells was unaffected by age, that of DELAY cells was significantly reduced. This was true both of spontaneous activity and task-related activity. Moreover, the reduction was greatest during the cue and delay periods for the preferred direction, meaning that the effect of age was to reduce the ability to distinguish preferred and non-preferred directions.

It appeared that the aging prefrontal cortex was accumulating excessive levels of an important signaling molecule called cAMP. When cAMP was inhibited or cAMP-sensitive ion channels were blocked, firing rates rose to more youthful levels. On the other hand, when cAMP was stimulated, aged neurons reduced their activity even more.

The findings are consistent with rat research that has found two of the agents used — guanfacine and Rp-cAMPS — can improve working memory in aged rats. Guanfacine is a medication that is already approved for treating hypertension in adults and prefrontal deficits in children. A clinical trial testing guanfacine's ability to improve working memory and executive functions in elderly subjects who do not have dementia is now taking place.

Reference: 

[2349] Wang, M., Gamo N. J., Yang Y., Jin L. E., Wang X-J., Laubach M., et al.
(2011).  Neuronal basis of age-related working memory decline.
Nature. advance online publication,

Related News

Stressors in middle age linked to cognitive decline in older women

Data from some 900 older adults has linked stressful life experiences among middle-aged women, but not men, to greater memory decline in later life.

A study involving more than 2,500 older adults (65+) found that the rate of worsening vision was associated with the rate of cognitive decline. More importantly, vision has a stronger influence on cognition than the reverse.

Hearing loss linked to increased dementia risk

Chronic insomnia linked to memory problems

Link found between chronic inflammation and Alzheimer's gene risk

Brain scans of 9,772 people aged 44 to 79, who were enrolled in the UK Biobank study, have revealed that smoking, high blood pressure, high pulse pressure, diabetes, and high BMI — but not high cholesterol — were all linked to greater brain shrinkage, less

A large Chinese study involving 20,000 people has found that the longer people were exposed to air pollution, the worse their cognitive performance in verbal and math tests. The effect of air pollution on verbal tests became more pronounced with age, especially for men and the less educated.

A review of 34 longitudinal studies, involving 71,244 older adults, has concluded that depression is associated with greater cognitive decline.

A study following nearly 28,000 older men for 20 years has found that regular consumption of leafy greens, dark orange and red vegetables and berry fruits, and orange juice, was associated with a lower risk of memory loss.

Poor sleep has been associated with the development of Alzheimer's disease, and this has been thought to be in part because the protein amyloid beta increases with sleep deprivation. A new study explains more.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news