Older adults' distractability can be used to help put a face to a name

  • A small study has used older adults’ inability to ignore irrelevant information to improve their memory for face-name pairs.

One important reason for the greater cognitive problems commonly experienced as we age, is our increasing difficulty in ignoring distracting and irrelevant information. But it may be that in some circumstances that propensity can be used to help memory.

The study involved 25 younger (17-23) and 32 older adults (60-86), who were shown the faces and names of 24 different people and told to learn them. The names were written in bright blue text and placed on the forehead, and each photo was shown for 3 seconds. After the learning session, participants were immediately tested on their recall of the name for each face. The test was self-paced. Following a 10 minute interval, during which they were given psychological tests, they were shown more photos of faces, but this time were told to ignore the text — their task was to push a button when they saw the same face appear twice in a row. The text was varied: sometimes names, sometimes words, and sometimes nonwords. Ten of the same faces and names from the first task were repeated in the series of 108 trials; all items were repeated three times (thus, 30 repeated face-name pairs; 30 other face-name pairs; 24 face-word pairs; 24 face-nonword pairs). The photos were each displayed for 1.5 seconds. A delayed memory test was given after another 10 minutes of psychological testing. A cued-recall test was followed by a forced-choice recognition test.

Unsurprisingly, overall younger adults remembered more names than older adults, and both groups remembered more on the second series, with younger adults improving more. But younger adults showed no benefit for the repeated face-name pairs, while — on the delayed recall task only — older adults did.

Interestingly, there was no sign, in either group, of repeated names being falsely recalled or recognized. Nor did they significantly affect familiarity.

It seems that this sort of inadvertent repetition doesn’t improve memory for items (faces, names), but, specifically, the face-name associations. The study builds on previous research indicating that older adults hyperbind distracting names and attended faces, which produces better learning of these face-name pairs.

It’s suggested that repetition as distraction might act as a sort of covert retrieval practice that relies on a nonconscious process specifically related to the priming of relational associations. Perhaps older adults’ vulnerability to distraction is not simply a sign of degeneration, but reflects a change of strategy to one that increases receptiveness to environmental regularities that have predictive value. Younger adults have narrowed attention that, while it allows them greater focus on the task, also stops them noticing information that is immediately irrelevant but helpful further down the track.

The researchers are working on a training program to help older adults with MCI use this benefit to better remember faces and names.

https://www.eurekalert.org/pub_releases/2018-03/bcfg-oad031618.php

Reference: 

Biss, Renée K., Rowe, Gillian, Weeks, Jennifer C., Hasher, Lynn, Murphy, Kelly J. 2018. Leveraging older adults’ susceptibility to distraction to improve memory for face-name associations. Psychology and Aging, 33(1), 158-164.

Related News

A three-year study involving 152 adults aged 50 and older, of whom 52 had been recently diagnosed with mild cognitive impairment and 31 were diagnosed with Alzheimer's disease, has found that those with mild or no cognitive impairment who initially had amyloid-beta plaques showed greater cogniti

More evidence for early changes in the eye in Alzheimer’s disease comes from a study involving both rats and postmortem human retinas.

Blocking a receptor involved in inflammation in the brains of mice with severe Alzheimer’s produced marked recovery in blood flow and vascular reactivity, a dramatic reduction in toxic amyloid-beta, and significant improvements in learning and memory.

A multi-year study involving 207 healthy older adults, in which their spinal fluids were repeatedly sampled and their brains repeatedly scanned, has found that disruptions in the default mode network emerges about the same time as chemical markers of Alzheimer’s appear in the spinal fluid (decre

An analysis of the anatomical connectivity in the brains of 15 people with Alzheimer's disease, 68 with mild cognitive impairment and 28 healthy older individuals, has found several measures showed disease effects:

The first detailed characterization of the molecular structures of amyloid-beta fibrils that develop in the brains of those with Alzheimer's disease suggests that different molecular structures of amyloid-beta fibrils may distinguish the brains of Alzheimer's patients with different clinical his

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news