Movie study confirms older people are more distractible

Idiosyncratic brain activity among older people watching a thriller-type movie adds to evidence that:

  • age may affect the ability to perceive and remember the order of events (explaining why older adults may find it harder to follow complex plots)
  • age affects the ability to focus attention and not be distracted
  • age affects the brain's connectivity — how well connected regions work together.

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).

While many studies have looked at how age changes brain function, the stimuli used have typically been quite simple. This thriller-type story provides more complex and naturalistic stimuli.

Younger adults' brains responded to the TV program in a very uniform way, while older adults showed much more idiosyncratic responses. The TV program (“Bang! You're dead”) has previously been shown to induce widespread synchronization of brain responses (such movies are, after all, designed to focus attention on specific people and objects; following along with the director is, in a manner of speaking, how we follow the plot). The synchronization seen here among younger adults may reflect the optimal response, attention focused on the most relevant stimulus. (There is much less synchronization when the stimuli are more everyday.)

The increasing asynchronization with age seen here has previously been linked to poorer comprehension and memory. In this study, there was a correlation between synchronization and measures of attentional control, such as fluid intelligence and reaction time variability. There was no correlation between synchronization and crystallized intelligence.

The greatest differences were seen in the brain regions controlling attention (the superior frontal lobe and the intraparietal sulcus) and language processing (the bilateral middle temporal gyrus and left inferior frontal gyrus).

The researchers accordingly suggested that the reason for the variability in brain patterns seen in older adults lies in their poorer attentional control — specifically, their top-down control (ability to focus) rather than bottom-up attentional capture. Attentional capture has previously been shown to be well preserved in old age.

Of course, it's not necessarily bad that a watcher doesn't rigidly follow the director's manipulation! The older adults may be showing more informed and cunning observation than the younger adults. However, previous studies have found that older adults watching a movie tend to vary more in where they draw an event boundary; those showing most variability in this regard were the least able to remember the sequence of events.

The current findings therefore support the idea that older adults may have increasing difficulty in understanding events — somthing which helps explain why some old people have increasing trouble following complex plots.

The findings also add to growing evidence that age affects functional connectivity (how well the brain works together).

It should be noted, however, that it is possible that there could also be cohort effects going on — that is, effects of education and life experience.

http://www.eurekalert.org/pub_releases/2015-08/uoc-ymt081415.php

Reference: 

Related News

A study involving mice lacking a master clock gene called Bmal1 has found that as the mice aged, their brains showed patterns of damage similar to those seen in Alzheimer's disease and other neurodegenerative disorders. Many of the injuries seemed to be caused by free radicals.

A new study involving 96 older adults initially free of dementia at the time of enrollment, of whom 12 subsequently developed mild Alzheimer’s, has clarified three fundamental issues about Alzheimer's: where it starts, why it starts there, and how it spreads.

Analysis of 5715 cases from the National Alzheimer's Coordinating Center (NACC) database has found that nearly 80% of more than 4600 Alzheimer's disease patients showed some degree of vascular pathology, compared with 67% of the controls, and 66% in the Parkinson's group.

The jugular venous reflux (JVR) occurs when the pressure gradient reverses the direction of blood flow in the veins, causing blood to leak backwards into the brain.

The

Following on from the evidence that Alzheimer’s brains show higher levels of metals such as iron, copper, and zinc, a mouse study has found that amyloid plaques in Alzheimer’s-like brains with significant neurodegeneration have about 25% more copper than those with little neurodegeneration.

An Italian study has found that a significant percentage of Alzheimer’s patients suffer from Obstructive Sleep Apnea Syndrome. This respiratory disorder, which causes people to temporarily stop breathing during their sleep, affects cerebral blood flow, promoting cognitive decline.

Data from 70 older adults (average age 76) in the Baltimore Longitudinal Study of Aging has found that those who reported poorer sleep (shorter sleep duration and lower sleep quality) showed a greater buildup of amyloid-beta plaques.

A new discovery helps explain why the “Alzheimer’s gene” ApoE4 is such a risk factor.

Analyses of cerebrospinal fluid from 15 patients with Alzheimer's disease, 20 patients with mild cognitive impairment, and 21 control subjects, plus brain tissue from

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news