Long-lasting effects of early-childhood brain injuries

January, 2012

A 10 year follow-up of children hospitalized for brain injuries in early childhood suggests that young brains are not as resilient as we thought.

I recently discussed some of the implications of head injuries and how even mild concussions can have serious and long-term consequences. A follow-up study looking at the effects of childhood traumatic brain injury ten years after the event has found that even those with mild TBI showed some measurable effects, while those with severe TBI had markedly poorer performance on a number of cognitive measures.

The study involved 40 children who were admitted to hospital with TBI in early childhood (between 2 to 7 years; average just under 5), and 16 healthy controls. The children’s cognitive functions were assessed at the time of accident, and again at 12 and 30 months and 10 years later. Of the 40 with TBIs, 7 had mild injuries, 20 had moderate, and 13 severe.

Unsurprisingly, children with severe TBI had the poorest outcomes. This group was significantly poorer (compared to controls) on full scale IQ; performance IQ; verbal IQ; verbal comprehension; perceptual organization, processing speed. Those who had moderate TBI were significantly poorer on full scale IQ and verbal comprehension only, and those with mild TBI performed more poorly than the controls on verbal comprehension only. Note the size of these effects: the average scores of the group with severe TBI were 18-26 points lower than the control group. In comparison, those with moderate TBI were around 10 points lower on the two significant measures.

These findings are in contrast to research involving adults and older children, where IQ tends to remain intact.

They also contradict the belief that young brains have greater ability to ‘bounce back’ from injury.

Interestingly, the recovery trajectory wasn’t significantly affected by severity of injury — all the groups followed a similar pattern and they all tended to plateau from 5 to 10 years after injury. In general, the findings paint a picture of a long period of disrupted development immediately after the injury, lasting perhaps as long as 30 months, before the brain has recovered sufficiently to progress relatively normally. In other words, intervention may be helpful even years after the injury.

One weakness in the study is the small number of mild TBI cases. It should also be noted that the IQ of the control group was surprisingly high (113). However, given that they had similar IQ levels to the TBI groups prior to injury, it is possible that this reflects a practice effect (but remember that all groups got the same amount of practice).

One thing I wonder about, given recent research pointing to the value of schooling in raising IQ, is the extent to which some of this is due to loss of education that may have resulted from severe injury.


Related News

Untreated sleep apnea in children shrinks brain & may slow development

Brain scans of children who have moderate or severe obstructive sleep apnea have found significant reductions of gray matter across the brain.

A study involving 30 children (aged 8-10), of whom 15 had experienced a sports-related concussion two years earlier, and all of whom were athletically active, found that those with a history of concussion performed worse on tests of

A small study involving 50 children and teens living in Mexico City (aged 13.4 ± 4.8 years) has found that those with the 'Alzheimer's gene' APOEε4 (22 of the 50) were more vulnerable to the effects of air pollution on cognition.

Following a previous study linking higher maternal levels of two common chemicals with slower mental and motor development in preschoolers, a new study has found that this effect continues into school age.

A gene linked to Alzheimer's has been linked to brain changes in childhood.

A study involving 362 children with reading problems has found that 16 weeks of daily 600 mg supplements of omega-3 DHA from algal sources improved their sleep. According to a sleep questionnaire filled out by parents, 40% of these children had significant sleep problems.

In the study, 18 children (aged 7-8), 20 adolescents (13-14), and 20 young adults (20-29) were shown pictures and asked to decide whether it was a new picture or one they had seen earlier.

Brain imaging data from 103 healthy people aged 5-32, each of whom was scanned at least twice, has demonstrated that wiring to the

Childhood amnesia — our inability to remember almost everything that happened to us when very young — is always interesting. It’s not as simple as an inability to form long-term memories.

Children’s ability to remember past events improves as they get older. This has been thought by many to be due to the slow development of the


Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news