Improve learning with co-occurring novelty

  • An animal study shows that following learning with a novel experience makes the learning stronger.
  • A human study shows that giving information positive associations improves your memory for future experiences with similar information.

We know that the neurotransmitter dopamine is involved in making strong memories. Now a mouse study helps us get more specific — and suggests how we can help ourselves learn.

The study, involving 120 mice, found that mice tasked with remembering where food had been hidden did better if they had been given a novel experience (exploring an unfamiliar floor surface) 30 minutes after being trained to remember the food location.

This memory improvement also occurred when the novel experience was replaced by the selective activation of dopamine-carrying neurons in the locus coeruleus that go to the hippocampus. The locus coeruleus is located in the brain stem and involved in several functions that affect emotion, anxiety levels, sleep patterns, and memory. The dopamine-carrying neurons in the locus coeruleus appear to be especially sensitive to environmental novelty.

In other words, if we’re given attention-grabbing experiences that trigger these LC neurons carrying dopamine to the hippocampus at around the time of learning, our memories will be stronger.

Now we already know that emotion helps memory, but what this new study tells us is that, as witness to the mice simply being given a new environment to explore, these dopamine-triggering experiences don’t have to be dramatic. It’s suggested that it could be as simple as playing a new video game during a quick break while studying for an exam, or playing tennis right after trying to memorize a big speech.

Remember that we’re designed to respond to novelty, to pay it more attention — and, it seems, that attention is extended to more mundane events that occur closely in time.

Emotionally positive situations boost memory for similar future events

In a similar vein, a human study has found that the benefits of reward extend forward in time.

In the study, volunteers were shown images from two categories (objects and animals), and were financially rewarded for one of these categories. As expected, they remembered images associated with a reward better. In a second session, however, they were shown new images of animals and objects without any reward. Participants still remembered the previously positively-associated category better.

Now, this doesn’t seem in any way surprising, but the interesting thing is that this benefit wasn’t seen immediately, but only after 24 hours — that is, after participants had slept and consolidated the learning.

Previous research has shown similar results when semantically related information has been paired with negative, that is, aversive stimuli.


Related News

Comparison of young adults (mean age 24.5) and older adults (mean age 69.1) in a visual memory test involving multitasking has pinpointed the greater problems older adults have with multitasking.

A study involving 171 sedentary, overweight 7- to 11-year-old children has found that those who participated in an exercise program improved both executive function and math achievement.

A link between positive mood and creativity is supported by a study in which 87 students were put into different moods (using music and video clips) and then given a category learning task to do (classifying sets of pictures with visually complex patterns).

A study involving 80 college students (34 men and 46 women) between the ages of 18 and 40, has found that those given a caffeinated energy drink reported feeling more stimulated and less tired than those given a decaffeinated soda or no drink.

We know active learning is better than passive learning, but for the first time a study gives us some idea of how that works. Participants in the imaging study were asked to memorize an array of objects and their exact locations in a grid on a computer screen.

If our brains are full of clusters of neurons resolutely only responding to specific features (as suggested in my earlier report), how do we bring it all together, and how do we switch from one point of interest to another?

A study involving young (average age 22) and older adults (average age 77) showed participants pictures of overlapping faces and places (houses and buildings) and asked them to identify the gender of the person.

Following on from earlier studies that found individual neurons were associated with very specific memories (such as a particular person), new research has shown that we can actually regulate the activity of specific neurons, increasing the firing rate of some while decreasing the rate of others

Two independent studies have found that students whose birthdays fell just before their school's age enrollment cutoff date—making them among the youngest in their class—had a substantially higher rate of ADHD diagnoses than students who were born later.

I’ve talked about the importance of labels for memory, so I was interested to see that a recent series of experiments has found that hearing the name of an object improved people’s ability to see it, even when the object was flashed onscreen in conditions and speeds (50 milliseconds) that would


Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news