The importance of cognitive control for intelligence

October, 2012

Brain imaging points to the importance of cognitive control, mediated by the connectivity of one particular brain region, for fluid intelligence.

What underlies differences in fluid intelligence? How are smart brains different from those that are merely ‘average’?

Brain imaging studies have pointed to several aspects. One is brain size. Although the history of simplistic comparisons of brain size has been turbulent (you cannot, for example, directly compare brain size without taking into account the size of the body it’s part of), nevertheless, overall brain size does count for something — 6.7% of individual variation in intelligence, it’s estimated. So, something, but not a huge amount.

Activity levels in the prefrontal cortex, research also suggests, account for another 5% of variation in individual intelligence. (Do keep in mind that these figures are not saying that, for example, prefrontal activity explains 5% of intelligence. We are talking about differences between individuals.)

A new study points to a third important factor — one that, indeed, accounts for more than either of these other factors. The strength of the connections from the left prefrontal cortex to other areas is estimated to account for 10% of individual differences in intelligence.

These findings suggest a new perspective on what intelligence is. They suggest that part of intelligence rests on the functioning of the prefrontal cortex and its ability to communicate with the rest of the brain — what researchers are calling ‘global connectivity’. This may reflect cognitive control and, in particular, goal maintenance. The left prefrontal cortex is thought to be involved in (among other things) remembering your goals and any instructions you need for accomplishing those goals.

The study involved 93 adults (average age 23; range 18-40), whose brains were monitored while they were doing nothing and when they were engaged in the cognitively challenging N-back working memory task.

Brain activity patterns revealed three regions within the frontoparietal network that were significantly involved in this task: the left lateral prefrontal cortex, right premotor cortex, and right medial posterior parietal cortex. All three of these regions also showed signs of being global hubs — that is, they were highly connected to other regions across the brain.

Of these, however, only the left lateral prefrontal cortex showed a significant association between its connectivity and individual’s fluid intelligence. This was confirmed by a second independent measure — working memory capacity — which was also correlated with this region’s connectivity, and only this region.

In other words, those with greater connectivity in the left LPFC had greater cognitive control, which is reflected in higher working memory capacity and higher fluid intelligence. There was no correlation between connectivity and crystallized intelligence.

Interestingly, although other global hubs (such as the anterior prefrontal cortex and anterior cingulate cortex) also have strong relationships with intelligence and high levels of global connectivity, they did not show correlations between their levels of connectivity and fluid intelligence. That is, although the activity within these regions may be important for intelligence, their connections to other brain regions are not.

So what’s so important about the connections the LPFC has with the rest of the brain? It appears that, although it connects widely to sensory and motor areas, it is primarily the connections within the frontoparietal control network that are most important — as well as the deactivation of connections with the default network (the network active during rest).

This is not to say that the LPFC is the ‘seat of intelligence’! Research has made it clear that a number of brain regions support intelligence, as do other areas of connectivity. The finding is important because it shows that the left LPFC supports cognitive control and intelligence through a mechanism involving global connectivity and some other as-yet-unknown property. One possibility is that this region is a ‘flexible’ hub — able to shift its connectivity with a number of different brain regions as the task demands.

In other words, what may count is how many different connectivity patterns the left LPFC has in its repertoire, and how good it is at switching to them.

An association between negative connections with the default network and fluid intelligence also adds to evidence for the importance of inhibiting task-irrelevant processing.

All this emphasizes the role of cognitive control in intelligence, and perhaps goes some way to explaining why self-regulation in children is so predictive of later success, apart from the obvious.

Reference: 

Related News

When you're reading a picture book to a very young child, it's easy to think it's obvious what picture, or part of a picture, is being talked about. But you know what all the words mean.

A small study that fitted 29 young adults (18-31) and 31 older adults (55-82) with a device that recorded steps taken and the vigor and speed with which they were made, has found that those older adults with a higher step rate performed better on memory tasks than those who were more sedentary.

Brain imaging while 11 individuals with traumatic brain injury and 15 healthy controls performed a

I've written at length about implementation plans in my book “Planning to Remember: How to Remember What You're Doing and What You Plan to Do”.

This is just a preliminary study presented at a recent conference, so we can't give it too much weight, but the finding is consistent with what we know about

I've reported before on the idea that the drop in

The number of items a person can hold in short-term memory is strongly correlated with their IQ. But short-term memory has been recently found to vary along another dimension as well: some people remember (‘see’) the items in short-term memory more clearly and precisely than other people.

Cognitive decline is common in those with multiple sclerosis, but not everyone is so afflicted. What governs whether an individual will suffer cognitive impairment?

Evidence is accumulating that age-related cognitive decline is rooted in three related factors: processing speed slows down (because of myelin

Preliminary findings from a small study show that older adults (68-91), after learning to use Facebook, performed about 25% better on tasks designed to measure their ability to continuously monitor and to quickly add or delete the contents of their

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health news