Ability to remember memories' origin develops slowly

October, 2011

A study comparing the brains of children, adolescents, and young adults has found that the ability to remember the origin of memories is slow to mature. As with older adults, impaired source memory increases susceptibility to false memories.

In the study, 18 children (aged 7-8), 20 adolescents (13-14), and 20 young adults (20-29) were shown pictures and asked to decide whether it was a new picture or one they had seen earlier. Some of the pictures were of known objects and others were fanciful figures (this was in order to measure the effects of novelty in general). After a 10-minute break, they resumed the task — with the twist that any pictures that had appeared in the first session should be judged “new” if that was the first appearance in the second session. EEG measurements (event-related potentials — ERPs) were taken during the sessions.

ERPs at the onset of a test stimulus (each picture) are different for new and old (repeated) stimuli. Previous studies have established various old/new effects that reflect item and source memory in adults. In the case of item memory, recognition is thought to be based on two processes — familiarity and recollection — which are reflected in ERPs of different timings and location (familiarity: mid-frontal at 300-500 msec; recollection: parietal at 400-70 msec). Familiarity is seen as a fast assessment of similarity, while recollection varies according to the amount of retrieved information.

Source memory appears to require control processes that involve the prefrontal cortex. Given that this region is the slowest to mature, it would not be surprising if source memory is a problematic memory task for the young. And indeed, previous research has found that children do have particular difficulty in sourcing memories when the sources are highly similar.

In the present study, children performed more poorly than adolescents and adults on both item memory and source memory. Adolescents performed more poorly than adults on item memory but not on source memory. Children performed more poorly on source memory than item memory, but adolescents and adults showed no difference between the two tasks.

All groups responded faster to new items than old, and ERP responses to general novelty were similar across the groups — although children showed a left-frontal focus that may reflect the transition from analytic to a more holistic processing approach.

ERPs to old items, however, showed a difference: for adults, they were especially pronounced at frontal sites, and occurred at around 350-450 msec; for children and adolescents they were most pronounced at posterior sites, occurring at 600-800 msec for children and 400-600 msec for adolescents. Only adults showed the early midfrontal response that is assumed to reflect familiarity processing. On the other hand, the late old/new effect occurring at parietal sites and thought to reflect recollection, was similar across all age groups. The early old/new effect seen in children and adolescents at central and parietal regions is thought to reflect early recollection.

In other words, only adults showed the brain responses typical of familiarity as well as recollection. Now, some research has found evidence of familiarity processing in children, so this shouldn’t be taken as proof against familiarity processing in the young. What seems most likely is that children are less likely to use such processing. Clearly the next step is to find out the factors that affect this.

Another interesting point is the early recollective response shown by children and adolescents. It’s speculated that these groups may have used more retrieval cues — conceptual as well as perceptual — that facilitated recollection. I’m reminded of a couple of studies I reported on some years ago, that found that young children were better than adults on a recognition task in some circumstances — because children were using a similarity-based process and adults a categorization-based one. In these cases, it had more to do with knowledge than development.

It’s also worth noting that, in adults, the recollective response was accentuated in the right-frontal area. This suggests that recollection was overlapping with post-retrieval monitoring. It’s speculated that adults’ greater use of familiarity produces a greater need for monitoring, because of the greater uncertainty.

What all this suggests is that preadolescent children are less able to strategically recollect source information, and that strategic recollection undergoes an important step in early adolescence that is probably related to improvements in cognitive control. But this process is still being refined in adolescents, in particular as regards monitoring and coping with uncertainty.

Interestingly, source memory is also one of the areas affected early in old age.

Failure to remember the source of a memory has many practical implications, in particular in the way it renders people more vulnerable to false memories.

Reference: 

Related News

A randomized clinical trial involving 103 teenage athletes who sustained concussions while playing sports found that those who underwent a supervised, aerobic exercise program took significantly less time to recover compared to those who instead engaged in mild stretching.

The American Academy of Pediatric now supports children and teens engaging in light physical activity and returning to school as they recover. It also now advises against complete removal of electronic devices, such as television, computers and smartphones, following a concussion.

A study involving 845 secondary school students has revealed that each hour per day spent watching TV, using the internet or playing computer games at average age 14.5 years was associated with poorer GCSE grades at age 16.

We've seen a number of studies showing the value of music training for children's development of language skills. A new study has investigated what happens if the training doesn't begin until high school.

There's been a lot of talk in recent years about the importance of mindset in learning, with those who have a “growth mindset” (ie believe that intelligence can be developed) being more academically successful than those who believe that intelligence is a fixed attribute.

Two studies indicate that young people carrying the “Alzheimer’s gene” (ApoE4) do not have the pathological changes found later in life. The first study, involving 1412 adolescents, found no differences in hippocampal volume or asymmetry as a function of gene status.

A study involving 187 children and adolescents with multiple sclerosis, plus 44 who experienced their first neurologic episode (clinically isolated syndrome) indicative of MS, has found that 35% of those with MS and 18% of those with clinically isolated syndrome were cognitively impaired.

I’ve talked before about how even mild head injuries can have serious consequences, and in recent years we’ve seen growing awareness of the long-term dangers of sports’ concussions (especially for

I’ve spoken before about the effects of motivation on test performance.

Chronic use of alcohol and marijuana during youth has been associated with poorer neural and cognitive function, which appears to continue into adulthood.

Pages

Subscribe to Latest newsSubscribe to Latest newsSubscribe to Latest health newsSubscribe to Latest news
Error | About memory

Error

The website encountered an unexpected error. Please try again later.