Study

Study & Education

Problem Solving

Older news items (pre-2010) brought over from the old website

Body movements can influence problem solving

There have been several studies in recent years finding that gestures can help us think, mainly by reducing working memory load. Now a study in which people were asked to tie the ends of two strings together has found that they could solve the problem more easily if they swung their arms while they thought. The strings were too far apart for a person holding one to reach the other, and there were several objects available to help solve the problem. The subjects were given eight, two-minute sessions to solve the problem, with 100 seconds devoted to finding a solution, interrupted by 20 seconds of exercise. During the exercise periods, some were told to swing their arms forward and backward, while others were told to alternately stretch their arms to the side. At the same time (to stop them consciously connecting these activities to the problem), they were told to count backwards by threes. The solution to the problem required attaching an object to one of the strings and swinging it so that it could be grasped while also holding the other string, and those in the arm-swinging group were 40% more likely to solve the problem — but, intriguingly, almost none of them were consciously aware of the connection between the exercise and the solution. The finding is another example of what is being called ‘embodied cognition’ — evidence that our bodies truly are part of our minds.

Thomas, L.E. & Lleras, A. 2009. Swinging into thought: Directed movement guides insight in problem solving. Psychonomic Bulletin & Review, in press.

http://www.eurekalert.org/pub_releases/2009-05/uoia-bmc051209.php

Brain's problem-solving function at work when we daydream

An imaging study has revealed that daydreaming is associated with an increase in activity in numerous brain regions, especially those regions associated with complex problem-solving. Until now it was thought that the brain's "default network" (which includes the medial prefrontal cortex, the posterior cingulate cortex and the temporoparietal junction) was the only part of the brain active when our minds wander. The new study has found that the "executive network" (including the lateral prefrontal cortex and the dorsal anterior cingulate cortex) is also active. Before this, it was thought that these networks weren’t active at the same time. It may be that mind wandering evokes a unique mental state that allows otherwise opposing networks to work in cooperation. It was also found that greater activation was associated with less awareness on the part of the subject that there mind was wandering.

Christoff, K. et al. 2009. Experience sampling during fMRI reveals default network and executive system contributions to mind wandering. Proceedings of the National Academy of Sciences, 106 (21), 8719-8724. 

http://www.eurekalert.org/pub_releases/2009-05/uobc-bpf051109.php

Searching in space is like searching your mind

A study of search modes in both spatial and abstract settings has found evidence that how we look for things, such as our car keys or umbrella, could be related to how we search for more abstract needs, such as words in memory or solutions to problems. The studies compared two search modes: exploitation, where seekers stay with a place or task until they have gotten appreciable benefit from it, and exploration, where seekers move quickly from one place or one task to another, looking for a new set of resources to exploit. In the study, participants "foraged" in a computerized world, moving around until they stumbled upon a hidden supply of resources, then deciding if and when to move on, and in which direction. The scientists tracked their movements. Two different worlds ("clumpy", with fewer but richer resources, and "diffuse", with many more, but much smaller, supplies) encouraged one mode or other. The idea was to "prime" the optimal foraging strategy for each world. The volunteers then participated in a more abstract, intellectual search task -- a computerized game akin to Scrabble. It was found that although the human brain appears capable of using exploration or exploitation search modes depending on the demands of the task, it also has a tendency through "priming" to continue searching in the same way even if in a different domain, such as when switching from a spatial to an abstract task. Moreover, people who have a tendency to use one mode more in one task have a similar tendency to use that mode more in other tasks. The findings also support the view that goal-directed cognition is an evolutionary descendant of spatial-foraging behavior.

Hills, T.T., Todd, P.M.  & Goldstone, R.L. 2008. Search in External and Internal Spaces: Evidence for Generalized Cognitive Search Processes. Psychological Science, 19 (8), 802-808.

http://www.eurekalert.org/pub_releases/2008-09/iu-sis090908.php

Insight into insight

A study investigating brain rhythms and their dynamics while volunteers solved verbal problems has shed light on insightful problem-solving. The findings indicate that focusing or attending too much on a topic can have a detrimental effect, and that a strong Aha! sensation involves minimal metacognitive (monitoring of one's own thoughts) processes and unconscious or, better yet, automatic, recombination of information. Interestingly, when clues were provided, it was possible to predict success or failure based on the brain state prior to the clue presentation.

Sandkühler, S. & Bhattacharya, J. 2008. Deconstructing Insight: EEG Correlates of Insightful Problem Solving. PLoS ONE 3(1): e1459. Full text available at http://www.plosone.org/doi/pone.0001459

http://www.physorg.com/news120290586.html

tags strategies: 

Dyslexia Therapy

Older news items (pre-2010) brought over from the old website

Remedial reading program improves brain wiring in children

An imaging study involving 72 children aged 8 to 10 has provided the first evidence that intensive instruction to improve reading skills in young children causes the brain to physically rewire itself. The study found that the ability of white matter tracts to transmit signals efficiently improved substantially after the children received six months (100 hours) of remedial training. Moreover, those who showed the most white matter change also showed the most improvement in reading ability. Previous research has found that both children and adults with reading difficulty display areas of compromised white matter.

[963] Keller, T. A., & Just M A.
(2009).  Altering Cortical Connectivity: Remediation-Induced Changes in the White Matter of Poor Readers.
Neuron. 64(5), 624 - 631.

http://www.physorg.com/news179584529.html
http://www.npr.org/templates/story/story.php?storyId=121253104

Pre-school exercises can prevent dyslexia

A study comparing 107 children with either parent dyslexic and a control group of children without a hereditary predisposition to dyslexia has found that half the children with a dyslexic parent found learning to read more challenging than children in the control group. The predictors of reading and writing difficulties were evident primarily in two contexts: as a delayed ability to perceive and mentally process the subtleties of speech sound, and as a sluggishness in naming familiar, visually presented objects. The difficulties children experience when learning to read can be significantly reduced through training, and the CoE in Learning and Motivation Research has developed computer game-like learning environments to aid preventive training, and made them available on the internet free of charge. It’s recommended that the child start these exercises before school, if possible.  The exercises and tools are all available at www.lukimat.fi.

The results were presented at the Academy of Finland's science breakfast on 21 August.

http://www.eurekalert.org/pub_releases/2008-08/aof-pae082708.php

Remedial instruction can close gap between good, poor readers

A brain imaging study of poor readers has found that 100 hours of remedial instruction not only improved the skills of struggling readers, but also changed the way their brains activated when they comprehended written sentences. 25 fifth-graders who were poor readers worked in groups of three for an hour a day with a reading "personal trainer," a teacher specialized in administering a remedial reading program. The training included both word decoding exercises in which students were asked to recognize the word in its written form and tasks in using reading comprehension strategies. Brain scans while the children were reading revealed that the parietotemporal region — responsible for decoding the sounds of written language and assembling them into words and phrases that make up a sentence — was significantly less activated among the poor readers than in the control group. The increases in activation seen as a result of training were still evident, and even greater, a year later.
Although dyslexia is generally thought of as caused by difficulties in the visual perception of letters, leading to confusions between letters like "p" and "d", such difficulties occur in only about 10% of the cases. Most commonly, the problem lies in relating the visual form of a letter to its sound.

[702] Meyler, A., Keller T. A., Cherkassky V. L., Gabrieli J. D. E., & Just M A.
(2008).  Modifying the brain activation of poor readers during sentence comprehension with extended remedial instruction: A longitudinal study of neuroplasticity.
Neuropsychologia. 46(10), 2580 - 2592.

http://www.eurekalert.org/pub_releases/2008-06/cmu-cmb061108.php

Having right timing 'connections' in brain is key to overcoming dyslexia

New research has found that key areas for language and working memory involved in reading are connected differently in dyslexics than in children who are good readers and spellers. But, after the children with dyslexia went through a three-week instructional program, their patterns of functional brain connectivity normalized and were similar to those of good readers. The study looked specifically at activity in the left and right inferior front gyrus. The left inferior front gyrus may control the communication between the different areas involved in language, especially spoken language, while the right is thought to be involved in controlling the processing of letters in written words. Prior to the treatment these two areas were overconnected in the dyslexics, and the left inferior frontal gyrus also was overconnected to the middle frontal gyrus, which is involved in working memory that requires temporal coordination. It is not yet known how long the improvement in connectivity is maintained.

[844] Richards, T. L., & Berninger V. W.
(2008).  Abnormal fMRI Connectivity in Children with Dyslexia During a Phoneme Task: Before But Not After Treatment.
Journal of neurolinguistics. 21(4), 294 - 304.

http://www.eurekalert.org/pub_releases/2007-09/uow-hrt090407.php
http://www.sciencedirect.com/science/journal/09116044

New insight into brain and speech promises help for learning disabilities

Following a new understanding of the nature of certain language dysfunctions, researchers have devised a new non-invasive diagnostic tool called BioMAP that can quickly identify children with a subset of learning disabilities that results from a dysfunction in the way the brainstem encodes certain basic sounds of speech. Such children accounted for nearly a third of the language-disordered children the researchers studied. BioMAP measures whether a child's nervous system can accurately translate a sound wave into a brain wave. If it cannot, the affected individual demonstrates problems in discriminating speech sounds that interfere with normal learning. Once identified, children with these problems will be able to improve their speech discrimination skills through auditory training.

[789] Kraus, N., & Nicol T.
(2005).  Brainstem origins for cortical 'what' and 'where' pathways in the auditory system.
Trends in Neurosciences. 28(4), 176 - 181.

http://www.eurekalert.org/pub_releases/2005-04/nu-nii040405.php

Promise for helping adults with dyslexia

Recent studies have demonstrated that children with dyslexia can benefit from programs aimed at “retraining” the brain. Now a new study shows that adults with dyslexia can also benefit from tutoring in processing words, and their brains show changes that indicate neural modifications due to the training.

[454] Eden, G. F., Jones K. M., Cappell K., Gareau L., Wood F. B., Zeffiro T. A., et al.
(2004).  Neural Changes following Remediation in Adult Developmental Dyslexia.
Neuron. 44(3), 411 - 422.

http://www.eurekalert.org/pub_releases/2004-10/cp-pfh102204.php

Immature motion pathways in the brain associated with poor reading skills

An interactive computer game called MovingToRead (MTR) has significantly improved reading skills in poor second-grade readers within three months by practicing left-right movement discrimination for 5 to 10 minutes once or twice a week. It has been suggested that immature motion pathways — the circuit of neurons that helps readers determine the location of letters of a word and words on a page — may be related to reading problems in children. The therapy appears to be most effective with second-graders (age 7).

http://www.eurekalert.org/pub_releases/2003-11/sfn-ssb111103.php

Short-term dyslexia treatment strengthens key brain regions

A group of dyslexic children and a group of good readers of the same age underwent functional magnetic resonance imaging (fMRI) to map their brain activation patterns during two types of reading tests. Both groups of children were found to use the same specific parts of their brains to perform the reading tasks, however, the activation of these regions was much weaker in the dyslexic children. The children with dyslexia then received a three-week training program based on principles outlined by the National Reading Panel (http://www.nationalreadingpanel.org). After this program the levels of brain activation were found to be essentially the same in the two groups.

[261] Aylward, E. H., Richards T. L., Berninger V. W., Nagy W. E., Field K. M., Grimme A. C., et al.
(2003).  Instructional treatment associated with changes in brain activation in children with dyslexia.
Neurology. 61(2), 212 - 219.

http://www.eurekalert.org/pub_releases/2003-07/aaon-sdt071503.php
More background on dyslexia including initial steps toward identifying it in a child, how it may be treated, and additional resources can be found in Neurology's "Patient Page" at http://www.neurology.org.

tags problems: 

Spacing Effect

See also

Practice

Testing

Older news items (pre-2010) brought over from the old website

The smart way to study

A large internet study has clarified the optimal timing for spacing out your learning. The very systematic study found much larger benefits to spacing your review of material than has been seen in earlier research when shorter intervals have been used. Given a fixed amount of study time, the optimal gap improved recall by 64% and recognition by 26%. Basically, the study found that if you want to remember just for a week, the optimal gap was one day; for remembering for a month, it was 11 days; for 2 months (70 days) it was 3 weeks, and similarly for remembering for a year. Extrapolating, it seems likely that if you’re wanting to remember information for several years, you should review it over several months. (You can read more about this study in my article on the most effective way of spacing your learning).

[872] Cepeda, N. J., Vul E., Rohrer D., Wixted J. T., & Pashler H.
(2008).  Spacing effects in learning: a temporal ridgeline of optimal retention.
Psychological Science: A Journal of the American Psychological Society / APS. 19(11), 1095 - 1102.

http://www.eurekalert.org/pub_releases/2008-11/uoc--tsw111808.php

Cramming doesn't work in the long term

Thinking back on how much you remember from your schooldays, it’s apparent to most of us that despite all the time spent in school, we’ve forgotten most of what we learned. A new study points to what we were doing wrong. The study looked at overlearning, which is the term for continuing to study after you’ve apparently learned it. Students went through a list of new words either five times (getting a perfect score no more than once) or ten times (getting it perfect at least three times). A week later, students who did the extra drilling performed better when tested, but four weeks later there was no difference. The results suggest that overlearning in a single session is wasted effort. However, when the material was studied in two separate sessions, and the break between sessions was at least a month, students did much better. Although the experiments involved rote learning, the researchers have also found similar effects with more abstract learning, like math.

[878] Rohrer, D., & Pashler H.
(2007).  Increasing Retention Without Increasing Study Time.
Current Directions in Psychological Science. 16(4), 183 - 186.

http://www.eurekalert.org/pub_releases/2007-08/afps-bts082907.php

Practicing skills in concentrated blocks not the most efficient way

While practicing several different skills in separate, concentrated blocks leads to better performance during practice, it appears that this approach is not the best method of learning for long-term retention. The temporary improvement in performance that results from blocked practice hinders learning because it allows people to overestimate how well they have learned a skill. For long-term retention, it appears that contextual-interference practice (practicing skills that are mixed with other tasks) results in better learning. This may be because such practice requires people to repeatedly retrieve the motor program corresponding to each task (repeated retrieval is a major factor in making stored memories easier to access). Such practice also requires the person to differentiate the skills in terms of their similarities and differences, which may be assumed to result in a better mental conceptualization of those skills. The fact that blocked practice leads to better short-term performance but poorer long-term learning "has great potential to fool teachers, trainers and instructors as well as students and trainees themselves."

[1167] Simon, D. A., & Bjork R. A.
(2001).  Metacognition in Motor Learning.
Journal of Experimental Psychology: Learning, Memory, and Cognition. 27(4), 907 - 912.

http://www.apa.org/releases/retention.html

tags strategies: 

The role of motivation on academic performance

January, 2013

A study shows how easily you can affect motivation, producing a significant effect on college test scores, while a large German study finds that motivational and strategy factors, but not intelligence, affects growth in math achievement at high school.

I’ve spoken before about the effects of motivation on test performance. This is displayed in a fascinating study by researchers at the Educational Testing Service, who gave one of their widely-used tests (the ETS Proficiency Profile, short form, plus essay) to 757 students from three institutions: a research university, a master's institution and a community college. Here’s the good bit: students were randomly assigned to groups, each given a different consent form. In the control condition, students were told: “Your answers on the tests and the survey will be used only for research purposes and will not be disclosed to anyone except the research team.” In the “Institutional” condition, the rider was added: “However, your test scores will be averaged with all other students taking the test at your college.” While in the “Personal” condition, they were told instead: “However, your test scores may be released to faculty in your college or to potential employers to evaluate your academic ability.”

No prizes for guessing which of these was more motivating!

Students in the “personal” group performed significantly and consistently better than those in the control group at all three institutions. On the multi-choice part of the test, the personal group performed on average .41 of the standard deviation higher than the control group, and the institutional group performed on average .26 SD higher than the controls. The largest difference was .68 SD. On the essay, the largest effect size was .59 SD. (The reason for the results being reported this way is because the focus of the study was on the use of such tests to assess and compare learning gains by colleges.)

The effect is perhaps less dramatic at the individual level, with the average sophomore score on the multichoice test being 460, compared to 458 and 455, for personal, institutional, and control groups, respectively. Interestingly, this effect was greater at the senior level: 469 vs 466 vs 460. For the essay question, however, the effect was larger: 4.55 vs 4.35 vs 4.21 (sophomore); 4.75 vs 4.37 vs 4.37 (senior). (Note that these scores have been adjusted by college admission scores).

Students also reported on motivation level, and this was found to be a significant predictor of test performance, after controlling for SAT or placement scores.

Student participants had received at least one year of college, or (for community colleges) taken at least three courses.

The findings confirm recently expressed concern that students don’t put their best efforts into low-stakes tests, and that, when such tests are used to make judgments about institutional performance (how much value they add), they may well be significantly misleading, if different institutions are providing different levels of motivation.

On a personal level, of course, the findings may be taken as further confirmation of the importance of non-academic factors in academic achievement. Something looked at more directly in the next study.

Motivation, study habits—not IQ—determine growth in math achievement

Data from a large German longitudinal study assessing math ability in adolescents found that, although intelligence was strongly linked to students' math achievement, this was only in the initial development of competence. The significant predictors of growth in math achievement, however, were motivation and study skills.

Specifically (and excitingly for me, since it supports some of my recurring themes!), at the end of Grade 5, perceived control was a significant positive predictor for growth, and surface learning strategies were a significant negative predictor. ‘Perceived control’ reflects the student’s belief that their grades are under their control, that their efforts matter. ‘Surface learning strategies’ reflect the use of rote memorization/rehearsal strategies rather than ones that encourage understanding. (This is not to say, of course, that these strategies don’t have their place — but they need to be used appropriately).

At the end of Grade 7, however, a slightly different pattern emerged, with intrinsic motivation and deep learning strategies the significant positive predictors of growth, while perceived control and surface learning strategies were no longer significant.

In other words, while intelligence didn’t predict growth at either point, the particular motivational and strategy variables that affected growth were different at different points in time, reflecting, presumably, developmental changes and/or changes in academic demands.

Note that this is not to say that intelligence doesn’t affect math achievement! It is, indeed, a strong predictor — but through its effect on getting the student off to a good start (lifting the starting point) rather than having an ongoing benefit.

There was, sadly but unfortunately consistent with other research, an overall decline in motivation from grade 5 to 7. There was also a smaller decline in strategy use (any strategy! — presumably reflecting the declining motivation).

It’s also worth noting that (also sadly but unsurprisingly) the difference between school types increased over time, with those in the higher track schools making more progress than those in the lowest track.

The last point I want to emphasize is that extrinsic motivation only affected initial levels, not growth. The idea that extrinsic motivation (e.g., wanting good grades) is of only short-term benefit, while intrinsic motivation (e.g., being interested in the subject) is far more durable, is one I have made before, and one that all parents and teachers should pay attention to.

The study involved 3,520 students, following them from grades 5 to 10. The math achievement test was given at the end of each grade, while intelligence and self-reported motivation and strategy use were assessed at the end of grades 5 and 7. Intelligence was assessed using the nonverbal reasoning subtest of Thorndike’s Cognitive Abilities Test (German version). The 42 schools in the study were spread among the three school types: lower-track (Hauptschule), intermediate-track (Realschule), and higher-track (Gymnasium). These school types differ in entrance standards and academic demands.

Reference: 

Source: 

Topics: 

tags: 

tags development: 

tags memworks: 

tags strategies: 

tags study: 

Effects of diagram orientation on comprehension

November, 2012

The most popular format of the most common type of diagram in biology textbooks is more difficult to understand than formats that use different orientations.

A study into how well students understand specific diagrams reminds us that, while pictures may be worth 1000 words, even small details can make a significant difference to how informative they are.

The study focused on variously formatted cladograms (also known as phylogenetic trees) that are commonly used in high school and college biology textbooks. Such diagrams are hierarchically branching, and are typically used to show the evolutionary history of taxa.

Nineteen college students (most of whom were women), who were majoring in biology, were shown cladograms in sequential pairs and asked whether the second cladogram (a diagonal one) depicted relationships that were the same or different as those depicted in the first cladogram (a rectangular one). Taxa were represented by single letters, which were either in forward or reverse alphabetical order. Each set (diagonal and rectangular) had four variants: up to the right (UR) with forward letters; UR with reverse letters; down to the right (DR), forward letters; DR, reverse. Six topologies were used, creating 24 cladograms in each set. Eye-tracking showed how the students studied the diagrams.

The order of the letters turned out not to matter, but the way the diagrams were oriented made a significant difference to how well students understood them.

In line with our training in reading (left to right), and regardless of orientation, students scanned the diagrams from left to right. The main line of the cladogram (the “backbone”) also provided a strong visual cue to the direction of scanning (upward or downward). In conjunction with the left-right bias, this meant that UR cladograms were processed from bottom to top, while DR cladograms were processed from top to bottom.

Put like that, the results are less surprising. Diagonal cladograms going up to the right were significantly harder for students to match to the rectangular format (63% correct vs 70% for cladograms going down to the right).

Moreover, this was true even for experts. Of the two biology professors included in the study, one showed the same pattern as the students in terms of accuracy, while the other managed the translations accurately enough, but took significantly longer to interpret the UR diagrams than the DR ones.

Unfortunately, the upward orientation is the more widely used (82% of diagonal cladograms in a survey of 27 high school & college biology textbooks; diagonal cladograms comprised 72% of all diagrams).

The findings suggest that teachers need to teach their students to go against their own natural inclinations, and regardless of orientation, scan the tree in a downward direction. This strategy applies to rectangular cladograms as well as diagonal ones.

It’s worth emphasizing another aspect of these findings: even the best type of diagonal cladogram was only translated at a relatively poor level of accuracy. Previous research has suggested that the diagonal cladogram is significantly harder to understand than the rectangular format. Note that the only difference between them is the orientation.

All this highlights two points:

Even apparently minor aspects of a diagram can make a significant difference to how easily it’s understood.

Teachers shouldn’t assume that students ‘naturally’ know how to read a diagram.

Reference: 

Novick, L., Stull, A. T., & Catley, K. M. (2012). Reading Phylogenetic Trees: The Effects of Tree Orientation and Text Processing on Comprehension. BioScience, 62(8), 757–764. doi:10.1525/bio.2012.62.8.8

Catley, K., & Novick, L. (2008). Seeing the wood for the trees: An analysis of evolutionary diagrams in biology textbooks. BioScience, 58(10), 976–987. Retrieved from http://www.jstor.org/stable/10.1641/B581011
 

Source: 

Topics: 

tags memworks: 

tags strategies: 

tags study: 

Intelligence

Older news items (pre-2010) brought over from the old website

Aerobic fitness boosts IQ in teenage boys

Data from the 1.2 million Swedish men born between 1950 and 1976 who enlisted for mandatory military service at the age of 18 has revealed that on every measure of cognitive performance, average test scores increased according to aerobic fitness — but not muscle strength. The link was strongest for logical thinking and verbal comprehension, and the association was restricted to cardiovascular fitness. The results of the study also underline the importance of getting healthier between the ages of 15 and 18 while the brain is still changing — those who improved their cardiovascular health between 15 and 18 showed significantly greater intelligence scores than those who became less healthy over the same time period. Those who were fittest at 18 were also more likely to go to college. Although association doesn’t prove cause, the fact that the association was only with cardiovascular fitness and not strength supports a cardiovascular effect on brain function. Results from over 260,000 full-sibling pairs, over 3,000 sets of twins, and more than 1,400 sets of identical twins, also supports a causal relationship.

[1486] Åberg, M AI., Pedersen N. L., Torén K., Svartengren M., Bäckstrand B., Johnsson T., et al.
(2009).  Cardiovascular fitness is associated with cognition in young adulthood.
Proceedings of the National Academy of Sciences. 106(49), 20906 - 20911.

http://www.physorg.com/news179415275.html
http://www.telegraph.co.uk/science/science-news/6692474/Physical-health-leads-to-mental-health.html

Confidence as important as IQ in exam success

I’ve talked repeatedly about the effects of self-belief on memory and cognition. One important area in which this is true is that of academic achievement. Evidence indicates that your perceived abilities matter, just as much? more than? your actual abilities. It has been assumed that self perceived abilities, self-confidence if you will, is a product mainly of nurture. Now a new twin study provides evidence that nurture / environment may only provide half the story; the other half may lie in the genes. The study involved 1966 pairs of identical twins and 1877 pairs of fraternal twins. The next step is to tease out which of these genes are related to IQ and which to personality variables.

[1080] Greven, C. U., Harlaar N., Kovas Y., Chamorro-Premuzic T., & Plomin R.
(2009).  More Than Just IQ: School Achievement Is Predicted by Self-Perceived Abilities—But for Genetic Rather Than Environmental Reasons.
Psychological Science. 20(6), 753 - 762.

http://www.newscientist.com/article/dn17187-confidence-as-important-as-iq-in-exam-success.html

Children of older fathers perform less well in intelligence tests during infancy

Reanalysis of a dataset of over 33,000 children born between 1959 and 1965 and tested at 8 months, 4 years, and 7 years, has revealed that the older the father, the more likely the child was to have lower scores on the various tests used to measure the ability to think and reason, including concentration, learning, memory, speaking and reading skills. In contrast, the older the mother, the higher the scores of the child in the cognitive tests.

[1447] Saha, S., Barnett A. G., Foldi C., Burne T. H., Eyles D. W., Buka S. L., et al.
(2009).  Advanced Paternal Age Is Associated with Impaired Neurocognitive Outcomes during Infancy and Childhood.
PLoS Med. 6(3), e1000040 - e1000040.

Full text available at http://medicine.plosjournals.org/perlserv/?request=get-document&doi=10.1371/journal.pmed.1000040

http://www.eurekalert.org/pub_releases/2009-03/plos-coo030309.php

Brain-training to improve working memory boosts fluid intelligence

General intelligence is often separated into "fluid" and "crystalline" components, of which fluid intelligence is considered more reflective of “pure” intelligence (for more on this, see my article), and largely resistant to training and learning effects. However, in a new study in which participants were given a series of training exercises designed to improve their working memory, fluid intelligence was found to have significantly improved, with the amount of improvement increasing with time spent training. The small study contradicts decades of research showing that improving on one kind of cognitive task does not improve performance on other kinds, so has been regarded with some skepticism by other researchers. More research is definitely needed, but the memory task did differ from previous studies, engaging executive functions such as those that inhibit irrelevant items, monitor performance, manage two tasks simultaneously, and update memory.

[1183] Jaeggi, S. M., Buschkuehl M., Jonides J., & Perrig W. J.
(2008).  From the Cover: Improving fluid intelligence with training on working memory.
Proceedings of the National Academy of Sciences. 105(19), 6829 - 6833.

http://www.physorg.com/news128699895.html
http://www.sciam.com/article.cfm?id=study-shows-brain-power-can-be-bolstered

Effect of schooling on achievement gaps within racial groups

Analysis of data from a national sample (U.S.) of 8,060 students, collected at four points in time, starting in kindergarten and ending in the spring of fifth grade, has found evidence that education has an impact in closing the achievement gap for substantial numbers of children. High-performing groups in reading were found among all races. About 30% of European Americans, 26% of African Americans and 45% of Asian Americans were in high-achieving groups by the spring of fifth grade — these groups included approximately 23% of African American children and 36% of Asian children who caught up with the initial group of high achievers over time. Only around 4% of European American students were in catch-up groups, because a higher percentage of European Americans started kindergarten as high achievers in reading. The situation was different for Hispanic students, however.  By the end of fifth grade, just over 5% of Hispanic children were high achievers in reading, while the remainder tested in the middle range. There were no low achievers and no catch-up groups. A different pattern was found in math. Only 17% of European American students were high-achievers in math by the end of fifth grade, including 13% who started kindergarten at a lower achievement level and caught up over time.  About 18% of Asian Americans were high-achievers at the end of fifth grade (11% catch-up). Only 0.3% of African Americans were high achievers at the end of fifth grade, and 26% were medium-high achievers. But about 16% of Hispanics were high achievers in math. There were no catch-up groups for either the African Americans or the Hispanics. This suggests that current schooling doesn't have as strong an impact on math achievement as it does in reading.

The study was presented in Washington, D.C. at the 2008 annual meeting of the Society for Research on Educational Effectiveness.

http://www.physorg.com/news123859991.html

Autism non-verbal not unintelligent

New findings suggest that the association of autism with low intelligence is a product of their language difficulties. Testing autistic kids and normal kids on two popular IQ tests — the WISC (which relies heavily on language) and Raven's Progressive Matrices (considered the best test of "fluid intelligence", and a test that doesn't require much language) found that while not a single autistic child scored in the "high intelligence" range of the WISC, a third did on the Raven's. A third of the autistics had WISC scores in the mentally retarded range, but only one in 20 scored that low on the Raven's test. The non-autistic children scored similarly on both tests. The same results occurred when the experiment was run on autistic and normal adults.

[580] Dawson, M., Soulières I., Gernsbacher M A., & Mottron L.
(2007).  The level and nature of autistic intelligence.
Psychological Science: A Journal of the American Psychological Society / APS. 18(8), 657 - 662.

http://www.physorg.com/news105376203.html
http://www.eurekalert.org/pub_releases/2007-08/afps-tmo080307.php

Being treated as oldest linked to IQ

The question of whether there is an IQ advantage to being the first-born has long been debated. Now analysis of IQ test results of 241,310 Norwegians drafted into the armed forces between 1967 and 1976 has revealed that the average IQ of first-born men was 103.2 while second-born men averaged 101.2 and third-borns, 100.0. However, second-born men whose older sibling died in infancy scored 102.9, and if both older siblings died young, the third-born score rose to 102.6. This suggests the advantage lies in the social rank in the family and not birth order as such.

[589] Kristensen, P., & Bjerkedal T.
(2007).  Explaining the Relation Between Birth Order and Intelligence.
Science. 316(5832), 1717 - 1717.

http://www.nature.com/news/2007/070618/full/070618-14.html

Executive function as important as IQ for math success

A study of 141 preschoolers from low-income homes has found that a child whose IQ and executive functioning were both above average was three times more likely to succeed in math than a child who simply had a high IQ. The parts of executive function that appear to be particularly linked to math ability in preschoolers are working memory and inhibitory control. In this context, working memory may be thought of as the ability to keep information or rules in mind while performing mental tasks. Inhibitory control is the ability to halt automatic impulses and focus on the problem at hand. Inhibitory control was also important for reading ability. The finding offers the hope that training to improve executive function will improve academic performance.

[1256] Blair, C., & Razza R P.
(2007).  Relating Effortful Control, Executive Function, and False Belief Understanding to Emerging Math and Literacy Ability in Kindergarten.
Child Development. 78(2), 647 - 663.

http://www.sciam.com/article.cfm?articleID=90377FAE-E7F2-99DF-3A1204FC5F2BF0F7

Students who believe intelligence can be developed perform better

Research with 12-year-olds has found that, although all students began the study with equivalent achievement levels in math, over a two year period, those who believed that intelligence was malleable increasingly did better than those who believed their intelligence was fixed. Another study found that, when students showing declines in their math grades were taught that intelligence could be increased, they reversed their decline and showed significantly higher math grades than others who weren’t taught that.

[1123] Blackwell, L. S., Trzesniewski K. H., & Dweck C S.
(2007).  Implicit Theories of Intelligence Predict Achievement across an Adolescent Transition: A Longitudinal Study and an Intervention.
Child Development. 78(1), 246 - 263.

http://www.eurekalert.org/pub_releases/2007-02/sfri-swb013107.php

Implicit stereotypes and gender identification may affect female math performance

Relatedly, another study has come out showing that women enrolled in an introductory calculus course who possessed strong implicit gender stereotypes, (for example, automatically associating "male" more than "female" with math ability and math professions) and were likely to identify themselves as feminine, performed worse relative to their female counterparts who did not possess such stereotypes and who were less likely to identify with traditionally female characteristics. Strikingly, a majority of the women participating in the study explicitly expressed disagreement with the idea that men have superior math ability, suggesting that even when consciously disavowing stereotypes, female math students are still susceptible to negative perceptions of their ability.

[969] Kiefer, A. K., & Sekaquaptewa D.
(2007).  Implicit stereotypes, gender identification, and math-related outcomes: a prospective study of female college students.
Psychological Science: A Journal of the American Psychological Society / APS. 18(1), 13 - 18.

http://www.eurekalert.org/pub_releases/2007-01/afps-isa012407.php

Reducing the racial achievement gap

And staying with the same theme, a study that came out six months ago, and recently reviewed on the excellent new Scientific American Mind Matters blog, revealed that a single, 15-minute intervention erased almost half the racial achievement gap between African American and white students. The intervention involved writing a brief paragraph about which value, from a list of values, was most important to them and why. The intervention improved subsequent academic performance for some 70% of the African American students, but none of the Caucasians. The study was repeated the following year with the same results. It is thought that the effect of the intervention was to protect against the negative stereotypes regarding the intelligence and academic capabilities of African Americans.

[1082] Cohen, G. L., Garcia J., Apfel N., & Master A.
(2006).  Reducing the Racial Achievement Gap: A Social-Psychological Intervention.
Science. 313(5791), 1307 - 1310.

Fitness and childhood IQ indicators of cognitive ability in old age

Data from the Scottish Mental Survey of 1932 has revealed that physical fitness contributed more than 3% of the differences in cognitive ability in old age. The study involved 460 men and women, who were tested using the same cognitive test at age 79 that they had undergone at age 11. Physical fitness was defined by time to walk six meters, grip strength and lung function. Childhood IQ was also significantly related to lung function at age 79, perhaps because people with higher intelligence might respond more favorably to health messages about staying fit. But physical fitness was more important for cognitive ability in old age than childhood IQ. People in more professional occupations and with more education also had better fitness and higher cognitive test scores at 79.

[770] Deary, I. J., Whalley L. J., Batty D. G., & Starr J. M.
(2006).  Physical fitness and lifetime cognitive change.
Neurology. 67(7), 1195 - 1200.

http://www.eurekalert.org/pub_releases/2006-10/aaon-fac100306.php

Black-white IQ gap has narrowed

Data now available suggests that Black Americans have gained an average of .18 IQ points a year on White Americans from 1972 to 2002 for a total gain of 5.4 IQ points.

[929] Dickens, W. T., & Flynn J. R.
(2006).  Black Americans reduce the racial IQ gap: evidence from standardization samples.
Psychological Science: A Journal of the American Psychological Society / APS. 17(10), 913 - 920.

http://www.eurekalert.org/pub_releases/2006-09/afps-big091206.php

Does IQ drop with age or does something else impact intelligence?

As people grow older, their IQ scores drop. But is it really that they lose intelligence? A study has found that if college students had to perform under conditions that mimic the perception deficits many older people have, their IQ scores would also take a drop.

[234] Gilmore, G. C., Spinks R. A., & Thomas C. W.
(2006).  Age effects in coding tasks: componential analysis and test of the sensory deficit hypothesis.
Psychology and Aging. 21(1), 7 - 18.

http://www.eurekalert.org/pub_releases/2006-05/cwru-did050106.php

Smarter kids may live longer

A prospective study that recruited 897 individuals who scored 135 or higher on the Stanford-Binet IQ test in 1922 has found that higher IQs were associated with longevity, with the survival advantage leveling off after a childhood IQ of 163. The association was independent of childhood social position (as measured by father’s occupation). The study confirms earlier research suggesting an association between IQ and mortality, and provides the new finding of where the cut-off point (when high IQ no longer brought additional health benefits) appears — the cutoff of 163 was much higher than expected. Suggested reasons for the association (all of which may well be valid) include: greater tendency to adopt healthy habits and avoid bad ones; increased probability of better jobs; better skills for managing their health and the health-care system.

[690] Martin, L. T., & Kubzansky L. D.
(2005).  Childhood Cognitive Performance and Risk of Mortality: A Prospective Cohort Study of Gifted Individuals.
Am. J. Epidemiol.. 162(9), 887 - 890.

http://health.yahoo.com/news/126478

Growing up in a chaotic home may impair child's cognitive development

An association between disorganized, noisy and cramped homes and lower childhood intelligence has been observed before, but the reasons for the association have never been clear. Now a study of some 8000 3- and 4-year-old twins has perhaps disentangled the variables, and has found that chaos had an influence on cognitive skills independent of socioeconomic status. The findings also suggest that when the environment is more stressful, intelligence is more likely to be constrained by genes.

[570] Petrill, S. A., Pike A., Price T., & Plomin R.
(Submitted).  Chaos in the home and socioeconomic status are associated with cognitive development in early childhood: Environmental mediators identified in a genetic design.
Intelligence. 32(5), 445 - 460.

http://www.newscientist.com/news/news.jsp?id=ns99996323

Early music instruction raises child’s IQ

A new study confirms earlier research supporting the benefits of early music instruction. The study involved 144 children, 6 years old at the start of the study. They were given free weekly voice or piano lessons at the Royal Conservatory of Music. Another group of 6-year-olds was given free training in weekly drama classes, while a fourth group received no extra classes during the study period. Before any classes were given, all the children were tested using the full Weschler intelligence test. At the end of the school year (their first school year), the children were retested. All had an IQ increase of at least 4.3 points on average (a consequence of going to school). Children who took drama lessons scored no higher than those who had no extra lessons, but those who took music lessons scored on average 2.7 points higher than the children who did not take music lessons. Those in the drama group did however show substantial improvement in adaptive social behavior.

[1009] Schellenberg, E. Glenn
(2004).  Music lessons enhance IQ.
Psychological Science: A Journal of the American Psychological Society / APS. 15(8), 511 - 514.

http://www.sciencentral.com/articles/view.htm3?article_id=218392326

Knowledge-based IQ test predicts work performance as well as school

A meta-analysis of 127 studies supports the view that the Miller Analogies Test (MAT) — a knowledge-based test used for admissions decisions into U.S. graduate schools as well as in hiring and promotion decisions in the workplace since 1926 — is predictive of performance in both the academic and workplace environments. Specifically, MAT was a valid predictor of seven of the eight measures of graduate student performance, five of the six school-to-work transition performance criteria, and all four of the work performance criteria. MAT is assumed to measure “g”, the oft-debated “general intelligence” factor.

[1109] Kuncel, N. R., Hezlett S. A., & Ones D. S.
(2004).  Academic Performance, Career Potential, Creativity, and Job Performance: Can One Construct Predict Them All?.
Journal of Personality and Social Psychology. 86(1), 148 - 161.

Support for "general intelligence" factor

Researchers into intelligence and memory have always concentrated on verbal abilities — for the good reason that they are considerably easier to test. New research suggests that strong visuospatial skills and working memory may be at least as good as verbal skills and working memory as indicators of general intelligence. The study, involving 167 subjects, found a clear relationship between being good at complex visuospatial tasks, and being good at tasks involving the so-called “central executive” (which coordinates tasks, sets goals, etc). The study lends support both to the view that intelligence has both discrete components and a general aspect, and that this “general intelligence” may be related to executive functioning.

[1152] Miyake, A., Friedman N. P., Rettinger D. A., Shah P., & Hegarty M.
(2001).  How are visuospatial working memory, executive functioning, and spatial abilities related? A latent-variable analysis.
Journal of Experimental Psychology. General. 130(4), 621 - 640.

http://www.eurekalert.org/pub_releases/2001-12/apa-npo121001.php

tags memworks: 

tags strategies: 

Learning difficulties

Separate pages are available for:

Older news items (pre-2010) brought over from the old website

New screening tool helps identify children at risk

An exam, called the NICU (neonatal intensive care unit) Network Neurobehavioral Scale (NNNS), has been created to identify newborns who may have problems with school readiness and behavior at age four. This opens up the possibility of early intervention to prevent these problems. The screening exam has been tested on 1248 babies, mostly black and on public assistance. Five discrete behavioral profiles were reliably identified; the most extreme negative profile was found in 5.8% of the infants. Infants with poor performance were more likely to have behavior problems at age three, school readiness problems at age four, and low IQ at 4 ½ — 40% had clinically significant problems externalizing (impulsivity and acting out), internalizing (anxiety, depression, withdrawn personalities), and with school readiness (delays in motor, concepts and language skills), and 35% had low IQ.

[596] Liu, J., Bann C., Lester B., Tronick E., Das A., Lagasse L., et al.
(2010).  Neonatal neurobehavior predicts medical and behavioral outcome.
Pediatrics. 125(1), e90-98 - e90-98.

http://www.eurekalert.org/pub_releases/2009-12/bu-nst120709.php

Cognitive dysfunction reversed in mouse model of Down syndrome

Down syndrome is characterized by specific learning impairments (for example, difficulties in using spatial and contextual information to form new memories, but less difficulty at remembering information linked to sensory cues) that point to the hippocampus as a problem area. Investigation has revealed that the problem lies in degeneration of the locus coeruleus, which sends norepinephrine to neurons in the hippocampus. Now a study using genetically engineered mice has found that norepinephrine precursor drugs improved performance in the mice within a few hours. However, the effect did wear off quite quickly too. Other research has looked at acetylcholine, which also acts at the hippocampus. The present findings suggest the best medication regimen will be one that improves both norepinephrine and acetylcholine signals. Locus coeruleus degeneration is also seen in dementia; Alzheimer’s develops among those with Down syndrome at a significantly higher rate than in the general population.

Salehi, A. et al. 2009. Restoration of Norepinephrine-Modulated Contextual Memory in a Mouse Model of Down Syndrome. Science Translational Medicine, 1 (7), 7-17.

http://www.eurekalert.org/pub_releases/2009-11/sumc-nds111309.php
http://www.eurekalert.org/pub_releases/2009-11/uoc--cdr111609.php http://www.the-scientist.com/blog/display/56154/

Testing one time is not enough

A study demonstrating the perils of one-time testing gave 16 common cognitive and neuropsychological tests to groups of people ages 18-39, 50-59 and 60-97 years. The variation between scores on the same test given three times during a two-week period was as big as the variation between the scores of people in different age groups. “It's as if on the same test, someone acted like a 20-year-old on a Monday, a 45-year-old on Friday, and a 32-year-old the following Wednesday”. The study makes clear the dangers of diagnosing learning disability, progressive brain disease or impairment from head injury on the basis of testing on a single occasion. The researcher suggests we should view cognitive abilities as a distribution of many potential levels of performance instead of as one stable short-term level; that people have a range of typical performances, a one-person bell curve. It may also be that within-person variability could be a useful diagnostic marker in itself — for example, extreme fluctuations might be an early warning of mental decline.

[921] Salthouse, T. A.
(2007).  Implications of within-person variability in cognitive and neuropsychological functioning for the interpretation of change.
Neuropsychology. 21(4), 401 - 411.

http://www.physorg.com/news102689828.html
http://www.eurekalert.org/pub_releases/2007-07/apa-csv062507.php

Common cholesterol-lowering drug reverses learning disabilities in mice

Following their discovery that neurofibromatosis 1 (NF1) — the leading genetic cause of learning disabilities — is linked to dysfunction in a protein called Ras, researchers have successfully used a commonly prescribed cholesterol-lowering statin drug (lovastatin) to reverse the learning deficits in mice. Clinical trials with humans are being planned.

[1348] Li, W., Cui Y., Kushner S., Brown R., Jentsch J., Frankland P., et al.
(2005).  The HMG-CoA Reductase Inhibitor Lovastatin Reverses the Learning and Attention Deficits in a Mouse Model of Neurofibromatosis Type 1.
Current Biology. 15(21), 1961 - 1967.

http://www.eurekalert.org/pub_releases/2005-11/uoc--rf110405.php
http://www.newscientist.com/channel/health/dn8276

More light on a common developmental disorder

Chromosome 22q11.2 deletion syndrome is the most common genetic deletion syndrome, and causes symptoms such as heart defects, cleft palate, abnormal immune responses and cognitive impairments. Two related studies have recently cast more light on these cognitive impairments. Previously it was known that numerical abilities were impaired more than verbal skills. The new study found children with the chromosome deletion performed more poorly on experiments designed to test visual attention orienting, enumerating, and judging numerical magnitudes. All three tasks relate to how the children mentally represent objects and the spatial relationships among them, supporting previous arguments that such visual-spatial skills are a fundamental foundation to the later learning of counting and mathematics. The second study found that such children had changes in the shape, size and position of the corpus callosum, the main bridge between the two hemispheres.

[1139] Simon, T. J., Bearden C. E., Mc-Ginn D MD., & Zackai E.
(2005).  Visuospatial and Numerical Cognitive Deficits in Children with Chromosome 22Q11.2 Deletion Syndrome.
Cortex. 41(2), 145 - 155.

[812] Simon, T. J., Ding L., Bish J. P., McDonald-McGinn D. M., Zackai E. H., & Gee J.
(2005).  Volumetric, connective, and morphologic changes in the brains of children with chromosome 22q11.2 deletion syndrome: an integrative study.
NeuroImage. 25(1), 169 - 180.

http://www.eurekalert.org/pub_releases/2005-03/chop-lbt030205.php

tags problems: 

ADHD

Older news items (pre-2010) brought over from the old website

Inconsistent processing speed among children with ADHD

A new analytical technique has revealed that the problem with children with ADHD is not so much that they are slower at responding to tasks, but rather that their response is inconsistent. The study of 25 children with ADHD and 24 typically developing peers found that on a task in which a number on one screen needed to be mentally added to another number shown on a second screen, those with ADHD were much less consistent in their response times, although the responses they did give were just as accurate. Higher levels of hyperactivity and restlessness or impulsivity (as measured by parent survey) correlated with more slower reaction times. The finding supports the idea that what underlies impaired working memory is a problem in how consistently a child with ADHD can respond during a working memory task.

[911] Buzy, W. M., Medoff D. R., & Schweitzer J. B.
(2009).  Intra-Individual Variability Among Children with ADHD - on a Working Memory Task: An Ex-Gaussian Approach.
Child Neuropsychology. 15(5), 441 - 441.

http://www.eurekalert.org/pub_releases/2009-03/uoc--ips032409.php

Hyperactivity enables children with ADHD to stay alert

A study of 12 8- to 12-year-old boys with ADHD, and 11 of those without, has found that activity levels of those with ADHD increased significantly whenever they had to perform a task that placed demands on their working memory. In a highly stimulating environment where little working memory is required (such as watching a Star Wars video), those with ADHD kept just as still as their normal peers. It’s suggested that movement helps them stay alert enough to complete challenging tasks, and therefore trying to limit their activity (when non-destructive) is counterproductive. Providing written instructions, simplifying multi-step directions, and using poster checklists are all strategies that can be used to help children with ADHD learn without overwhelming their working memories.

[734] Rapport, M., Bolden J., Kofler M., Sarver D., Raiker J., & Alderson R.
(2009).  Hyperactivity in Boys with Attention-Deficit/Hyperactivity Disorder (ADHD): A Ubiquitous Core Symptom or Manifestation of Working Memory Deficits?.
Journal of Abnormal Child Psychology. 37(4), 521 - 534.

http://www.eurekalert.org/pub_releases/2009-03/uocf-ush030909.php

Transcendental Meditation reduces ADHD symptoms among students

A pilot study involving 10 middle school students with ADHD has found that those who participated in twice-daily 10 minute sessions of Transcendental Meditation for three months showed a dramatic reduction in stress and anxiety and improvements in ADHD symptoms and executive function. The effect was much greater than expected. ADHD children have a reduced ability to cope with stress.
A second, recently completed study has also found that three months practice of the technique resulted in significant positive changes in brain functioning during visual-motor skills, especially in the circuitry of the brain associated with attention and distractibility. After six months practice, measurements of distractibility moved into the normal range.

Grosswald, S.J., Stixrud, W.R., Travis, F. & Bateh, M.A. 2008. Use of the Transcendental Meditation technique to reduce symptoms of Attention Deficit Hyperactivity Disorder (ADHD) by reducing stress and anxiety: An exploratory study. Current Issues in Education, 10 (2)

http://www.eurekalert.org/pub_releases/2008-12/muom-tmr122408.php

How Ritalin works to focus attention

Ritalin has been widely used for decades to treat attention deficit hyperactivity disorder (ADHD), but until now the mechanism of how it works hasn’t been well understood. Now a rat study has found that Ritalin, in low doses, fine-tunes the functioning of neurons in the prefrontal cortex, and has little effect elsewhere in the brain. It appears that Ritalin dramatically increases the sensitivity of neurons in the prefrontal cortex to signals coming from the hippocampus. However, in higher doses, prefrontal neurons stopped responding to incoming information, impairing cognition. Low doses also reinforced coordinated activity of neurons, and weakened activity that wasn't well coordinated. All of this suggests that Ritalin strengthens dominant and important signals within the prefrontal cortex, while lessening weaker signals that may act as distractors.

[663] Devilbiss, D. M., & Berridge C. W.
(2008).  Cognition-Enhancing Doses of Methylphenidate Preferentially Increase Prefrontal Cortex Neuronal Responsiveness.
Biological Psychiatry. 64(7), 626 - 635.

http://www.eurekalert.org/pub_releases/2008-06/uow-suh062408.php

Study raises questions about diagnosis, treatment of ADHD

The first large, longitudinal study of adolescents and ADHD has revealed that only about half of children diagnosed with attention-deficit hyperactivity disorder exhibit the cognitive defects commonly associated with the condition. Part of the explanation may lie in the fact that ADHD is simply the extreme end of a normal continuum of behavior that varies in the population, and its diagnosis is defined by where health professionals "draw the line" on this continuum. This finding suggests that behavior-rating scales alone are not sensitive enough to differentiate between the two groups. Researchers also found surprising results regarding the effectiveness of medicine in treating ADHD. In contrast to children in United States, youth in northern Finland are rarely treated with medicine for ADHD, yet the prevalence, symptoms, psychiatric comorbidity and cognition of the disorder is relatively the same as in the U.S., where stimulant medication is widely used. Although the medication is very effective in the short-term, the study raises questions concerning its long-term efficacy. The study also confirmed that hyperactivity and impulsivity decrease with age, while inattention increasingly predominates; that ADHD is associated with increased rates of other psychiatric problems, especially depression, anxiety, oppositional behaviors, conduct disorders, and post-traumatic stress disorder. The study of Finnish adolescents found a prevalence of 8.5% with a male/female ratio of 5.7:1.

[615] McCracken, J. T., Varilo T., Yang M. H., Nelson S. F., Peltonen L., JÄRVELIN M-R., et al.
(2007).  Prevalence and Psychiatric Comorbidity of Attention-Deficit/Hyperactivity Disorder in an Adolescent Finnish Population.
Journal of the American Academy of Child & Adolescent Psychiatry. 46(12), 1575 - 1583.

[1367] JÄRVELIN, M-R., Smalley S. L., Lubke G. H., MUTHÉN B., Moilanen I. K., McGough J. J., et al.
(2007).  Subtypes Versus Severity Differences in Attention-Deficit/Hyperactivity Disorder in the Northern Finnish Birth Cohort.
Journal of the American Academy of Child & Adolescent Psychiatry. 46(12), 1584 - 1593.

[1030] Ebeling, H., JÄRVELIN M-R., Smalley S. L., Loo S. K., Humphrey L. A., Tapio T., et al.
(2007).  Executive Functioning Among Finnish Adolescents With Attention-Deficit/Hyperactivity Disorder.
Journal of the American Academy of Child & Adolescent Psychiatry. 46(12), 1594 - 1604.

[1104] Hurtig, T., Ebeling H., Taanila A., Miettunen J., Smalley S. L., McGough J. J., et al.
(2007).  ADHD Symptoms and Subtypes: Relationship Between Childhood and Adolescent Symptoms.
Journal of the American Academy of Child & Adolescent Psychiatry. 46(12), 1605 - 1613.

http://www.eurekalert.org/pub_releases/2008-01/uoc--srq012208.php

Gene predicts better outcome as cortex normalizes in teens with ADHD

Recent research found that thickening of brain areas that control attention in the right cortex (right orbitofrontal/inferior prefrontal and posterior parietal cortex ) was associated with better clinical outcomes in ADHD. A new study has found that these brain areas are thinnest in those who carry a particular variant of a gene. The version of the dopamine D4 receptor gene, called the 7-repeat variant, was found in nearly a quarter of youth with ADHD and about one-sixth of the healthy controls. Although this particular gene version increased risk for ADHD, it also made it more likely that the areas would thicken during adolescence, with consequent improvement in behaviour and performance.

Citekey 1067/ibib]</p><p><a href="http://www.eurekalert.org/pub_releases/2007-08/niom-gpb080107.php">http:... TV viewing during adolescence linked with risk of attention and learning difficulties</h3><p>A long-running study of 678 families in upstate New York, surveyed children at 14, 16 and 22 years old (averages), and again when the children in the study had reached an average age of 33. At age 14, 225 (33.2%) of the teens reported that they watched three or more hours of television per day. Those who watched 1 or more hours of television per day at mean age 14 years were at higher risk of poor homework completion, negative attitudes toward school, poor grades, and long-term academic failure. Those who watched 3 or more hours of television per day were most likely to experience these outcomes, and moreover were at higher risk of subsequent attention problems and were the least likely to receive postsecondary education. Analysis of the data also indicated that television watching contributes to learning difficulties and not vice versa.</p><p>[ibib]540 not found

http://www.eurekalert.org/pub_releases/2007-05/jaaj-ftv050307.php

Drug for teen drivers with ADHD

A comparison of the effects of OROS methylphenidate (Concerta), a controlled-release stimulant, and extended release amphetamine salts (Adderall XR) on driving performance in teens with ADHD has found that treatments with Concerta led to fewer inattentive driving errors and less hyperactive or impulsive driving errors, such as speeding and inappropriate braking, compared with Adderall XR and placebo.

[1076] Cox, D. J., Merkel L. R., Moore M., Thorndike F., Muller C., & Kovatchev B.
(2006).  Relative Benefits of Stimulant Therapy With OROS Methylphenidate Versus Mixed Amphetamine Salts Extended Release in Improving the Driving Performance of Adolescent Drivers With Attention-Deficit/Hyperactivity Disorder.
Pediatrics. 118(3), e704-710 - e704-710.

http://www.sciencedaily.com/releases/2006/09/060905225503.htm
http://www.eurekalert.org/pub_releases/2006-09/uovh-rfn090506.php

ADHD linked to genetic and environmental interactions

A study of 172 children who were enrolled in a community-based study of low levels of lead exposure has found evidence that increasing lead exposure is linked to impairment on a number of executive functions (impaired in those with ADHD), but that certain genetic and biological factors seemed to predispose an individual to the negative effects of lead exposure. For instance, only children with certain variations of the DRD4 gene seemed vulnerable to lead's adverse effects on attentional flexibility. Boys were more vulnerable to this effect than girls.

The study was presented on May 1, 2006 at the annual Pediatric Academic Societies meeting in San Francisco.

http://www.eurekalert.org/pub_releases/2006-05/cchm-sla042606.php

Drug improves information processing in adults with ADHD

Mixed amphetamine salts extended release (MAS XR) substantially improved the speed and accuracy in information processing of young adults with attention-deficit/hyperactivity disorder (ADHD). Excitingly, the improvement persisted after the 3 weeks of treatment had been stopped for 3 weeks.

Kay, G.G. & Kardiasmenos, K.S. 2006. Effect of Mixed Amphetamine Salts Extended Release on Neurocognitive Speed in Young Adults with ADHD. Paper presented at the annual American Psychiatric Association Meeting in Toronto, Canada. Poster #NR678

Kay, G.G. & Kardiasmenos, K.S. 2006. Effect of Mixed Amphetamine Salts Extended Release on Neurocognitive Accuracy in Young Adults with ADHD. Paper presented at the annual American Psychiatric Association Meeting in Toronto, Canada. Poster #NR679

http://www.eurekalert.org/pub_releases/2006-05/pn-mas_1052406.php

Breakdown of myelin insulation in brain's wiring implicated in childhood developmental disorders

Previous research has suggested that the production of myelin (a fatty insulation coating the brain's internal wiring) is a key component of brain development through childhood and well into middle age, when development peaks and deterioration begins, and that midlife breakdown of myelin is implicated to onset of Alzheimer's disease later in life. Now new research suggests the disruption of myelination is a key neurobiological component behind childhood developmental disorders, such as autism and attention deficit/hyperactivity disorder, and addictive behaviors. The analysis also suggests that alcohol and other drugs of abuse have toxic effects on the myelination process in some adolescents.

Bartzokis, G. 2005. Adolescent Psychiatry. Hillsdale, N.J.: The Analytic Press Inc.

http://www.eurekalert.org/pub_releases/2005-11/uoc--bom111405.php

ADDERALL XR significantly improves driving performance, attention in young adults with ADHD

ADDERALL XR® significantly improved driving performance, cognitive function and attention in young adults with attention-deficit/hyperactivity disorder (ADHD) in a controlled driving simulator study. An earlier study found that adults with ADHD had a significant higher incidence of traffic violations, and license suspensions than patients without ADHD — ADHD patients were five times more likely than non-ADHD patients to have five or more speeding tickets and three times more likely to have had three or more vehicular crashes.

Kay, G. 2005. The Effect of Adderall XR and Atomoxetine on Simulated Driving Safety in Young Adults with ADHD. Presented at the 18th Annual U.S. Psychiatric & Mental Health Congress in Las Vegas, NV.

http://www.eurekalert.org/pub_releases/2005-11/pn-axs110805.php

Cognitive therapy for ADHD

A researcher that has previously demonstrated that working memory capacity can be increased through training, has now reported that the training software has produced significant improvement in children with ADHD — a disability that is associated with deficits in working memory. The study involved 53 children with ADHD, aged 7-12, who were not on medication for their disability. 44 of these met the criterion of more than 20 days of training. Half the participants were assigned to the working memory training program and the other half to a comparison program. 60% of those who underwent the wm training program no longer met the clinical criteria for ADHD after five weeks of training. The children were tested on visual-spatial memory, which has the strongest link to inattention and ADHD. Further research is needed to show that training improves ability on a wider range of tasks.

[583] Klingberg, T., Fernell E., Olesen P. J., Johnson M., Gustafsson P., Dahlström K., et al.
(2005).  Computerized Training of Working Memory in Children With ADHD-A Randomized, Controlled Trial.
Journal of the American Academy of Child & Adolescent Psychiatry. 44(2), 177 - 186.

http://www.sciam.com/article.cfm?articleID=000560D5-7252-12B9-9A2C83414B7F0000&sc=I100322

tags memworks: 

tags problems: 

Dyscalculia

Older news items (pre-2010) brought over from the old website

Right parietal lobe implicated in dyscalculia

By temporarily knocking out an area in the right parietal lobe (the right intraparietal sulcus), researchers have induced dyscalculia in normal subjects, providing strong evidence that dyscalculia is caused by malfunction in this area. These findings were further validated by testing participants suffering from developmental dyscalculia. Although less well-known, dyscalculia is as prevalent as dyslexia and attention deficit hyperactivity disorder (around 5%).

Kadosh, R.C. et al. 2007. Virtual Dyscalculia Induced by Parietal-Lobe TMS Impairs Automatic Magnitude Processing. Current Biology, online ahead of print March 22

http://www.sciencedaily.com/releases/2007/03/070322132931.htm
http://www.eurekalert.org/pub_releases/2007-03/ucl-tro032107.php

Scientists find brain function most important to math ability

A finding that an area of the brain widely thought to be involved in processing number information generally, in fact has two very separate functions, may be the key to diagnosing dyscalculia. One function is responsible for counting 'how many' things are present and the other is responsible for knowing 'how much'. The brain activity specific to estimating numbers of things is thought to be the brain network that underlies arithmetic and may be abnormal in dyscalculics.

[1336] Castelli, F., Glaser D. E., & Butterworth B.
(2006).  Discrete and analogue quantity processing in the parietal lobe: A functional MRI study.
Proceedings of the National Academy of Sciences of the United States of America. 103(12), 4693 - 4698.

http://www.eurekalert.org/pub_releases/2006-03/ucl-sfb030606.php

Calculation difficulties in children of very low birthweight

Learning difficulties, including problems with numeracy, are common in Western populations. Many children with learning difficulty are survivors of preterm birth. Although some of these children have neurological disabilities, many are neurologically normal. A neuroimaging study of neurologically normal adolescent children who had been born preterm at 30 weeks gestation or less found an area in the left parietal lobe where children without a deficit in calculation ability have more grey matter than those who do have this deficit.

[1281] Isaacs, E. B., Edmonds C. J., Lucas A., & Gadian D. G.
(2001).  Calculation difficulties in children of very low birthweight: A neural correlate.
Brain. 124(9), 1701 - 1707.

http://brain.oupjournals.org/cgi/content/abstract/124/9/1701
http://news.bbc.co.uk/hi/english/sci/tech/newsid_1512000/1512664.stm
http://www.independent.co.uk/story.jsp?story=90945

tags problems: 

tags study: 

Pages

Subscribe to RSS - Study
Error | About memory

Error

The website encountered an unexpected error. Please try again later.