Study

Study & Education

What is intelligence?

Intelligence in a cultural context

One theory of intelligence sees intelligence in terms of adaptiveness. Thus: "What constitutes intelligence depends upon what the situation demands" (Tuddenham 1963). Intelligence in these terms cannot be understood outside of its cultural context. Naturally to us it may seem self-evident that intelligence has to do with analytical and reasoning abilities, but we are perceiving with the sight our culture taught us.

If we lived, for example, in a vast desert, where success relied on your ability to find plants, water, prey and to remember these locations, an "intelligent" person would be one who was skilled at finding their way around and remembering what they'd seen and where they'd seen it. In a society where people are stuck within a limited social group, where people are forced to get on with each other because they can't escape each other, and where survival requires you to depend on these people, social skills will be highly valued. An "intelligent" person might well be a person who is skilled in social relations.

If I lived in such a society, would I have become skilled in these areas?

If I had spent my childhood playing with construction toys such as Lego, would I be better at spatial relations?

In other words, is intelligence something that you simply have in some measure, which manifests itself in the skills that you practice when young / that are valued in your society or within your family? Or are you born instead with particular talents that, if you are lucky, are valued by your society and thus seen as signs of intelligence?

Here's one of my favorite stories.

An anthropologist, Joe Glick, was studying a tribe in Africa1. The Kpelle tribe. Glick asked adults to sort items into categories. Rather than producing taxonomic categories (e.g. "fruit" for apple), they sorted into functional groups (e.g. "eat" for apple). Such functional grouping is something only very young children in our culture would do usually. Glick tried, and failed, to teach them to categorize items. Eventually he decided they simply didn't have the mental ability to categorize in this way. Then, as a last resort, he asked them how a stupid person would do this task. At this point, without any hesitation, they sorted the items into taxonomic categories!

They could do it, but in their culture, it was of no practical value. It was stupid.

Our IQ tests use categorization, and assumptions of how items relate to each other, to test "intelligence". (And how many of us, when filling in IQ tests, thought of different ways to answer questions, but answered the way we knew would be considered "right"?) These tests measure our ability to understand the mind of the test setter / marker. Do they measure anything else?

Multiple intelligences

One theory of intelligence that has had a certain influence on educational policy in the last 10-15 years is that of Howard Gardner’s idea of multiple intelligences (Gardner 1983). Gardner suggested that there are at least seven separate, relatively independent intelligences: linguistic, logical-mathematical, spatial, bodily kinaesthetic, intrapersonal, interpersonal, and musical.

Each intelligence has core components, such as sensitivity to the sounds, rhythms and meaning of words (linguistic), and has a developmental pattern relatively independent of the others. Gardner suggested the relative strengths of these seven intelligences are biologically determined, but the development of each intelligence depends on environmental influences, most particularly on the interaction of the child with adults.

This model of intelligence has positively influenced education most particularly by perceiving intelligence as much broader than the mathematical-language focus of modern education, and thus encouraging schools to spend more time on other areas of development.

It also, by seeing the development of particular intelligences as dependent on the child’s interaction with adults, encourages practices such as mentoring and apprenticeships, and supports parental and community involvement in educational environments. Because intelligence is seen as developing in a social context, grounding education in social institutions and in “real” environments takes on particular value.

All these are very positive aspects of the influence of this theory. On the downside, the idea of intelligence as being biologically determined is a potentially dangerous one. Gardner claims that a preschool child could be given simple tests that would demonstrate whether or not they had specific talents in any of those seven intelligences. The child could then be given training tailored to that talent.

Should we then deny that training to those who don't have that talent?

Do you know how many outstanding people - musicians, artists, mathematicians, writers, scientists, dancers, etc - showed signs of remarkable talent as very young children? Do you know how many so-called child prodigies went on to become outstanding in their field when adult? In both cases, not many.

The idea of "talent" is grounded in our society, but in truth, we have come no further in demonstrating its existence than the circular argument: he's good at that, therefore he has a talent for it; how do we know he has a talent? because he's good at it. Early ability does not demonstrate an innate talent unless the child has had no special opportunity to learn and practice the ability (and notwithstanding parental claims and retrospective reports, independent observation of this is lacking). (More on the question of innate talent)

Schooling and intelligence

The more we believe in innate talent, or innate intelligence, the less effort we will put into educating those who don't exhibit ability - although there are many environmental reasons for such failures.

The whole province of intelligence testing is, I believe, a dangerous one. Indeed, I was appalled to hear of its prevalence in American education. While intelligence was seen as some inborn talent unaffected by training or experience by the early makers and supporters of psychometric tests, recent research strongly suggests that schooling affects IQ score.

If you take two children who at age 13 have identical IQs and grades and then retest them five years later, after one child has finished high school while the other has dropped out of school in ninth grade, you find that the child who dropped out of school has lost around 1.8 IQ points for every year of missed school (Ceci, 1999).

Starting school late or leaving early results in a decrease in IQ relative to a matched peer who received more schooling. In families where children attend school intermittently, there is a high negative correlation between age and IQ, implying that as the children got older, their IQ dropped commensurately.

The most obvious, and simplest, explanation is that much of what is tested in IQ tests is either directly or indirectly taught in school. This is not to say schooling has any effect on intelligence itself (whatever that is).

References: 

  • Ceci, S. J. 1999. Schooling and intelligence. In S.J. Ceci & Wendy M. Williams (eds) The nature-nurture debate: The essential readings. Essential Readings in Developmental Psychology. Oxford: Blackwell. Pp168-175.
  • Ericsson, K.A. & Charness, N. Expert performance: Its structure and acquisition. In S.J. Ceci & Wendy M. Williams (eds) The nature-nurture debate: The essential readings. Essential Readings in Developmental Psychology. Oxford: Blackwell. Pp200-255.

1. Sternberg, R.J. 1997. Successful intelligence: How practical and creative intelligence determine your success in life. Plume.

tags memworks: 

Topics: 

Drawing best encoding strategy

  • Even quick and not particularly skilled sketches make simple information significantly more likely to be remembered, probably because drawing incorporates several factors that are known to improve memorability.

In a series of experiments involving college students, drawing pictures was found to be the best strategy for remembering lists of words.

The basic experiment involved students being given a list of simple, easily drawn words, for each of which they had 40 seconds to either draw the word, or write it out repeatedly. Following a filler task (classifying musical tones), they were given 60 seconds to then recall as many words as possible. Variations of the experiment had students draw the words repeatedly, list physical characteristics, create mental images, view pictures of the objects, or add visual details to the written letters (such as shading or other doodles).

In all variations, there was a positive drawing effect, with participants often recalling more than twice as many drawn than written words.

Importantly, the quality of the drawings didn’t seem to matter, nor did the time given, with even a very brief 4 seconds being enough. This challenges the usual explanation for drawing benefits: that it simply reflects the greater time spent with the material.

Participants were rated on their ability to form vivid mental images (measured using the VVIQ), and questioned about their drawing history. Neither of these factors had any reliable effect.

The experimental comparisons challenge various theories about why drawing is beneficial:

  • that it processes the information more deeply (when participants in the written word condition listed semantic characteristics of the word, thus processing it more deeply, the results were no better than simply writing out the word repeatedly, and drawing was still significantly better)
  • that it evokes mental imagery (when some students were told to mentally visualize the object, their recall was intermediate between the write and draw conditions)
  • that it simply reflects the fact that pictures are remembered better (when some students were shown a picture of the target word during the encoding time, their recall performance was not significantly better than that of the students writing the words)

The researchers suggest that it is a combination of factors that work together to produce a greater effect than the sum of each. These factors include mental imagery, elaboration, the motor action, and the creation of a picture. Drawing brings all these factors together to create a stronger and more integrated memory code.

http://www.eurekalert.org/pub_releases/2016-04/uow-ntr042116.php

Reference: 

[4245] Wammes JD, Meade ME, Fernandes MA. The drawing effect: Evidence for reliable and robust memory benefits in free recall. The Quarterly Journal of Experimental Psychology [Internet]. 2016 ;69(9):1752 - 1776. Available from: http://dx.doi.org/10.1080/17470218.2015.1094494

Source: 

tags memworks: 

tags study: 

Topics: 

tags strategies: 

Tell a friend what you learned

  • A single instance of retrieval, right after learning, is enough to significantly improve your memory, and stop the usual steep forgetting curve for non-core information.

A study involving 60 undergraduate students confirms the value of even a single instance of retrieval practice in an everyday setting, and also confirms the value of cues for peripheral details, which are forgotten more readily.

In three experiments involving 20 undergraduate students, students were shown foreign or otherwise obscure movie clips that contained scenes of normal everyday events. The 24-second clips from 40 films were shown over a period of about half an hour. After a delay of either several minutes, three days, or seven days, the students were questioned on their memory of the general plot, as well as details such as sounds, colors, gestures, and background details that allow a person to re-experience an event in rich and vivid detail.

In the second experiment, students were given a brief visual cue, such as a simple glimpse of the title and a sliver of a screenshot, on testing. In the third experiment, students recalled the information soon after viewing, in addition to the later test.

Researcher found:

  • Peripheral details were, unsurprisingly, forgotten more quickly, and to a greater degree.
  • But those given cues did better at remembering peripheral details.
  • Cues didn’t significantly affect the memory of more substantial matters.
  • Those who retrieved their memories soon after viewing showed no forgetting of peripheral information.
  • Interestingly, these students still assumed they had forgotten a lot (confirming once again, that we're not great at judging our own memory)!

The finding confirms the value of even a single instance of retrieval practice, even without any delay. Note that memory was tested after a week. For longer recall, additional retrieval practice is likely to be needed — but it's probably fair to say that it's that first instance of retrieval that has the biggest effect. I discuss all this in much greater detail in my book on practice.

It's also worth thinking about this in conjunction with the earlier report that there's a special benefit in recounting the information to another person.

https://www.eurekalert.org/pub_releases/2017-01/bu-wta011717.php

Reference: 

Source: 

tags memworks: 

tags study: 

Topics: 

tags strategies: 

Repeating aloud to another person boosts recall

  • The simple act of repeating something to another person helps you remember it, more than if you just repeated it to yourself.

A Canadian study involving French-speaking university students has found that repeating aloud, especially to another person, improves memory for words.

In the first experiment, 20 students read a series of words while wearing headphones that emitted white noise, in order to mask their own voices and eliminate auditory feedback. Four actions were compared:

  • repeating silently in their head
  • repeating silently while moving their lips
  • repeating aloud while looking at the screen
  • repeating aloud while looking at someone.

They were tested on their memory of the words after a distraction task. The memory test only required them to recognize whether or not the words had occurred previously.

There was a significant effect on memory. The order of the conditions matches the differences in memory, with memory worst in the first condition, and best in the last.

In the second experiment, 19 students went through the same process, except that the stimuli were pseudo-words. In this case, there was no memory difference between the conditions.

The effect is thought to be due to the benefits of motor sensory feedback, but the memory benefit of directing your words at a person rather than a screen suggests that such feedback goes beyond the obvious. Visual attention appears to be an important memory enhancer (no great surprise when we put it that way!).

Most of us have long ago learned that explaining something to someone really helps our own understanding (or demonstrates that we don’t in fact understand it!). This finding supports another, related, experience that most of us have had: the simple act of telling someone something helps our memory.

http://www.eurekalert.org/pub_releases/2015-10/uom-rat100615.php

Reference: 

tags memworks: 

Topics: 

tags strategies: 

Improve learning with co-occurring novelty

  • An animal study shows that following learning with a novel experience makes the learning stronger.
  • A human study shows that giving information positive associations improves your memory for future experiences with similar information.

We know that the neurotransmitter dopamine is involved in making strong memories. Now a mouse study helps us get more specific — and suggests how we can help ourselves learn.

The study, involving 120 mice, found that mice tasked with remembering where food had been hidden did better if they had been given a novel experience (exploring an unfamiliar floor surface) 30 minutes after being trained to remember the food location.

This memory improvement also occurred when the novel experience was replaced by the selective activation of dopamine-carrying neurons in the locus coeruleus that go to the hippocampus. The locus coeruleus is located in the brain stem and involved in several functions that affect emotion, anxiety levels, sleep patterns, and memory. The dopamine-carrying neurons in the locus coeruleus appear to be especially sensitive to environmental novelty.

In other words, if we’re given attention-grabbing experiences that trigger these LC neurons carrying dopamine to the hippocampus at around the time of learning, our memories will be stronger.

Now we already know that emotion helps memory, but what this new study tells us is that, as witness to the mice simply being given a new environment to explore, these dopamine-triggering experiences don’t have to be dramatic. It’s suggested that it could be as simple as playing a new video game during a quick break while studying for an exam, or playing tennis right after trying to memorize a big speech.

Remember that we’re designed to respond to novelty, to pay it more attention — and, it seems, that attention is extended to more mundane events that occur closely in time.

Emotionally positive situations boost memory for similar future events

In a similar vein, a human study has found that the benefits of reward extend forward in time.

In the study, volunteers were shown images from two categories (objects and animals), and were financially rewarded for one of these categories. As expected, they remembered images associated with a reward better. In a second session, however, they were shown new images of animals and objects without any reward. Participants still remembered the previously positively-associated category better.

Now, this doesn’t seem in any way surprising, but the interesting thing is that this benefit wasn’t seen immediately, but only after 24 hours — that is, after participants had slept and consolidated the learning.

Previous research has shown similar results when semantically related information has been paired with negative, that is, aversive stimuli.

https://www.eurekalert.org/pub_releases/2016-09/usmc-rim090716.php

http://www.eurekalert.org/pub_releases/2016-06/ibri-eps061516.php

Reference: 

Source: 

tags memworks: 

Topics: 

tags strategies: 

Digital media may be changing how you think

  • Reading from a screen may encourage users to focus on concrete details rather than more abstract thinking.

Four studies involving a total of more than 300 younger adults (20-24) have looked at information processing on different forms of media. They found that digital platforms such as tablets and laptops for reading may make you more inclined to focus on concrete details rather than interpreting information more abstractly.

As much as possible, the material was presented on the different media in identical format.

In the first study, 76 students were randomly assigned to complete the Behavior Identification Form on either an iPad or a print-out. The Form assesses an individual's current preference for concrete or abstract thinking. Respondents have to choose one of two descriptions for a particular behavior — e.g., for “making a list”, the choice of description is between “getting organized” or “writing things down”. The form presents 25 items.

There was a marked difference between those filling out the form on the iPad vs on a physical print-out, with non-digital users showing a significantly higher preference for abstract descriptions than digital users (mean of 18.56 vs 13.75).

In the other three studies, the digital format was always a PDF on a laptop. In the first of these, 81 students read a short story by David Sedaris, then answered 24 multichoice questions on it, of which half were abstract and half concrete. Digital readers scored significantly lower on abstract questions (48% vs 66%), and higher on concrete questions (73% vs 58%).

In the next study, 60 students studied a table of information about four, fictitious Japanese car models for two minutes, before being required to select the superior model. While one model was objectively superior in regard to the attributes and attribute rating, the amount of detail means (as previous research has shown) that those employing a top-down “gist” processing do better than those using a bottom-up, detail-oriented approach. On this problem, 66% of the non-digital readers correctly chose the superior model, compared to 43% of the digital readers.

In the final study, 119 students performed the same task as in the preceding study, but all viewed the table on a laptop. Before viewing the table, however, some were assigned to one of two priming activities: a high-level task aimed at activating more abstract thinking (thinking about why they might pursue a health goal), or a low-level task aimed at activating more concrete thinking (thinking about how to pursue the same goal).

Being primed to think more abstractly did seem to help these digital users, with 48% of this group correctly answering the car judgment problem, compared to only 25% of those given the concrete priming activity, and 30% of the control group.

I note that the performance of the control group is substantially below the performance of the digital users in the previous study, although there was no apparent change in the methodology. However, this was not noted or explained in the paper, so I don't know why this was. It does lead me not to put too much weight on this idea that priming can help.

However, the findings do support the view that reading on digital devices does encourage a more concrete style of thinking, reinforcing the idea that we are inclined to process information more shallowly when we read it from a screen.

Of course, this is, as the researchers point out, not an indictment. Sometimes, this is the best way to approach certain tasks. But what it does suggest is that we need to consider what sort of processing is desirable, and modify our strategy accordingly. For example, you may find it helpful to print out material that requires a high level of abstract thinking, particularly if your degree of expertise in the subject means that it carries a high cognitive load.

http://www.eurekalert.org/pub_releases/2016-05/dc-dmm050516.php

Reference: 

Kaufman, G., & Flanagan, M. (2016). High-Low Split : Divergent Cognitive Construal Levels Triggered by Digital and Non-digital Platforms. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1–5. doi:10.1145/2858036.2858550 http://dl.acm.org/citation.cfm?doid=2858036.2858550

Topics: 

tags study: 

tags memworks: 

tags strategies: 

Finger tracing helps children doing geometry problems

  • Finger tracing key elements in worked problems seems to help some students better understand and apply mathematical concepts.

I've reported before on studies showing how gesturing can help children with mathematics and problem-solving. A new Australian study involving children aged 9-13 has found that finger-tracing has a similar effect.

Students who used their finger to trace over practice examples while simultaneously reading geometry or arithmetic material were able to complete the problems more quickly and correctly than those who didn't use the same technique.

In the first experiment, involving 52 students aged 11-13, some students were instructed to use their index fingers to trace elements of worked examples in triangle geometry, involving two angle relationships (Vertical angles are equal; Any exterior angle equals the sum of the two interior opposite angles.). Students were given two minutes to study a short instructional text on the relationships and how they can be used to solve particular problems. They were then given two minutes to study two worked examples. The tracing group were given additional instruction in how to use their index finger to trace out highlighted elements. The non-tracing group were told to keep their hands in their lap. Testing consisted of six questions, two of which were the same as the acquisition problems but with different numbers, and four of which were transfer questions, requiring more thoughtful responses.

A ceiling effect meant there was no difference between the two groups on the first two test questions. The tracing group answered significantly more transfer questions, although the difference wasn't great. There was no difference in how difficult the groups rated the test items.

In the second experiment, involving 54 Year 4 students, the instruction and problems concerned the fundamental order of operations. The tracing group were told to trace the operation symbols. The tracing group did significantly better, although again, the difference wasn't great, and again, there was no difference in assessment of problem difficulty.

In another experiment, involving 42 Year 5 students (10-11 years), students were given 5 minutes to study three angle relationships involving parallel lines (vertical angles are equal; corresponding angles are equal; the sum of co- interior angles is 180°). While answers to the 'basic' test questions failed to show significant differences, on the advanced transfer problems, the tracing group solved significantly more test questions than the non-tracing group, solved them more quickly, made fewer errors, and reported lower levels of test difficulty.

In the final experiment, involving 72 Year 5 students, on the advanced test problems, students who traced on the paper outperformed those who traced above the paper, who in turn outperformed those who simply read the material.

The researchers claim the findings support the view that tracing out elements of worked examples helps students construct good mental schemas, making it easier for them to solve new problems, and reducing cognitive demand.

As with gesturing, the benefits of tracing are not dramatic, but I believe the pattern of these results support the view that, when cognitive load is high (something that depends on the individual student as well as the task and its context), tracing key elements of worked examples might be a useful strategy.

Further research looking at individual differences would be helpful. I think greater benefits would be shown for students with low working memory capacity.

http://www.eurekalert.org/pub_releases/2016-01/uos-ftc012816.php

Reference: 

[4046] Hu F-T, Ginns P, Bobis J. Getting the point: Tracing worked examples enhances learning. Learning and Instruction [Internet]. 2015 ;35:85 - 93. Available from: http://www.sciencedirect.com/science/article/pii/S0959475214000929

[4043] Ginns P, Hu F-T, Byrne E, Bobis J. Learning By Tracing Worked Examples. Applied Cognitive Psychology [Internet]. 2015 :n/a - n/a. Available from: http://onlinelibrary.wiley.com/doi/10.1002/acp.3171/abstract

Source: 

tags development: 

tags study: 

Topics: 

tags strategies: 

Seeing exemplary peer work can undermine student performance

  • Two experiments show that exposing students to exceptional examples of work by their peers is discouraging for many.

A natural experiment involving 5,740 participants in a MOOC ( massive open online course) has found that when students were asked to assess each other's work, and the examples were exceptional, a large proportion of students dropped the course.

In the MOOC, as is not uncommon practice, course participants were asked to write an essay and then to grade a random sample of their peers' essays. Those randomly assigned to evaluate exemplary peer essays were dramatically more likely to quit the course than those assigned to read more typical essays.

Specifically, around 68% of students who graded essays of average quality finished and passed the course, earning a certificate. Among those who graded slightly above average essays (more than one standard deviation above the class mean, 7.5/9), 64% earned a certificate. But among those who graded the best essays (those more than 1.6 SDs above the mean), only 45% earned a certificate.

These numbers can be compared to the fact that 75% of students who wrote an average essay earned a certificate, and 95% of those who wrote a 'perfect' essay, 9/9, earned a certificate. The difference between these numbers is about the same (in fact, slightly less) than the effect of grading average vs top essays.

A follow-up study, involving 361 participants, simulated this setting, in order to delve into what the students thought. Participants, recruited via Amazon's Mechanical Turk, were asked to write a minimum of 500 characters in response to a quote and essay prompt. They were told the best responses would go into a lottery to win a bonus. They were then asked to assess two very short essays (about 200 words) supposedly written by peers. These were either both well-written, or both poorly-written. This was followed by some questions about what they felt and thought, and an opportunity to write a second essay.

Unsurprisingly, those who were given exceptional essays to grade felt significantly less able to write an essay as good as those. They also decided that the ability to write an excellent short answer to such philosophical questions was not very important or relevant to them, and were much more likely not to write another essay (43% of those who read the poor essays went on to try again, while only 27% of those who read the excellent essays did so).

Until now, research has mainly focused on how students respond when peer work is of a standard that the student is likely to see as “attainable”. This research shows how comparisons that are seen as unattainable may do more harm than good.

http://www.eurekalert.org/pub_releases/2016-02/afps-sep020216.php

Reference: 

tags strategies: 

Topics: 

tags study: 

Support for the use of song in learning a foreign language

  • Children taught foreign language vocabulary in the form of a song learned to pronounce the words better than those who learned the words using an oral poem.
  • Recall was also significantly better, and particularly so after six months.

A small study that compared teaching Spanish-speaking children English vocabulary using a song or a spoken poem has found definite and long-term advantages to the song form.

The study involved 38 Spanish-speaking Ecuadorian children (aged 9-13), of whom 22 were randomly assigned to learn a 29-word English text as an oral poem, and 16 learned it as a song. None of the children had had any formal instruction in English; all had some limited music training. The children were given 4 training sessions and 3 testing sessions over two weeks, with a final test for 13 children six months later.

Children in the song condition out-performed those in the spoken condition on every measure: their ability to recall the passage verbatim, pronounce the words, and translate target terms from English to Spanish.

While pronunciation of vowels was notably better, though there was no difference in consonants.

Long-term recall is of course the main question of interest: six months after this little experiment, with no English instruction since, those from the song condition could recall without prompting an average of 8.83 words out of 10 target words, compared with 0.29 words for those from the spoken condition. However, there was no significant difference in translation success, which was extremely low in both cases (2.26 vs 1.07 — this compares with 4.03 vs 2.69 at the end of training).

The song itself, its melody and rhythmic structure, was remembered very well. The children in the song condition also enjoyed the learning sessions much more.

The study is small, and comes with several caveats, but it does provide support for the use of songs as an adjunct to foreign language learning.

Reference: 

[3969] Good AJ, Russo FA, Sullivan J. The efficacy of singing in foreign-language learning. Psychology of Music [Internet]. 2015 ;43(5):627 - 640. Available from: http://pom.sagepub.com/content/43/5/627

tags strategies: 

Topics: 

Short online ‘pep talks’ can boost students

A large study shows how a 45-minute online intervention can improve struggling high school students' attitude to schoolwork, and thus their academic performance.

There's been a lot of talk in recent years about the importance of mindset in learning, with those who have a “growth mindset” (ie believe that intelligence can be developed) being more academically successful than those who believe that intelligence is a fixed attribute. A new study shows that a 45-minute online intervention can help struggling high school students.

The study involved 1,594 students in 13 U.S. high schools. They were randomly allocated to one of three intervention groups or the control group. The intervention groups either experienced an online program designed to develop a growth mindset, or an online program designed to foster a sense of purpose, or both programs (2 weeks apart). All interventions were expected to improve academic performance, especially in struggling students.

The interventions had no significant benefits for students who were doing okay, but were of significant benefit for those who had an initial GPA of 2 or less, or had failed at least one core subject (this group contained 519 students; a third of the total participants). For this group, each of the interventions was of similar benefit; interestingly, the combined intervention was less beneficial than either single intervention. It's plausibly suggested that this might be because the different messages weren't integrated, and students may have had some trouble in taking on board two separate messages.

Overall, for this group of students, semester grade point averages improved in core academic courses and the rate at which students performed satisfactorily in core courses increased by 6.4%.

GPA average in core subjects (math, English, science, social studies) was calculated at the end of the semester before the interventions, and at the end of the semester after the interventions. Brief questions before and after the interventions assessed the students' beliefs about intelligence, and their sense of meaningfulness about schoolwork.

GPA before intervention was positively associated with a growth mindset and a sense of purpose, explaining why the interventions had no effect on better students. Only the growth mindset intervention led to a more malleable view of intelligence; only the sense-of-purpose intervention led to a change in perception in the value of mundane academic tasks. Note that the combined intervention showed no such effects, suggesting that it had confused rather than enlightened!

In the growth mindset intervention, students read an article describing the brain’s ability to grow and reorganize itself as a consequence of hard work and good strategies. The message that difficulties don't indicate limited ability but rather provide learning opportunities, was reinforced in two writing exercises. The control group read similar materials, but with a focus on functional localization in the brain rather than its malleability.

In the sense-of-purpose interventions, students were asked to write about how they wished the world could be a better place. They read about the reasons why some students worked hard, such as “to make their families proud”; “to be a good example”; “to make a positive impact on the world”. They were then asked to think about their own goals and how school could help them achieve those objectives. The control group completed one of two modules that didn't differ in impact. In one, students described how their lives were different in high school compared to before. The other was much more similar to the intervention, except that the emphasis was on economic self-interest rather than social contribution.

The findings are interesting in showing that you can help poor learners with a simple intervention, but perhaps even more, for their indication that such interventions are best done in a more holistic and contextual way. A more integrated message would hopefully have been more effective, and surely ongoing reinforcement in the classroom would make an even bigger difference.

http://www.futurity.org/high-school-growth-mindset-910082/

Reference: 

Source: 

Topics: 

tags strategies: 

tags study: 

tags development: 

tags memworks: 

Pages

Subscribe to RSS - Study