Childrens learning

How children learn and strategies to help them

Early development

Children’s understanding, and their use of memory and learning strategies, is a considerably more complex situation than most of us realize. To get some feeling for this complexity, let’s start by looking at a specific area of knowledge: mathematics.

Children's math understanding

Here’s a math problem:

Pete has 3 apples. Ann also has some apples. Pete and Ann have 9 apples altogether. How many apples does Ann have?

Pete and Ann have 9 apples altogether. Three of these belong to Pete and the rest belong to Ann. How many apples does Ann have?

The same problem, phrased slightly differently. Would it surprise you to know that this version is more likely to be correctly answered by children than the first version?

Whether or not a child solves a math problem correctly is not simply a matter of whether he or she knows the math — the way the problem is worded plays a crucial part in determining whether the child understands the problem correctly. Slight (and to adult eyes, insignificant) differences in the wording of a problem have a striking effect on whether children can solve it.

Mathematics also provides a clear demonstration of the seemingly somewhat haphazard development in cognitive abilities. It’s not haphazard, of course, but it sometimes appears that way from the adult perspective. In math, understanding different properties of the same concept can take several years. For example, children’s understanding of addition and subtraction is not an all-or-none business; adding as combining is grasped by young children quite early, but it takes some 2 to 3 years at school to grasp the essential invariants of additive relations. Multiplicative relations are even harder, with children up to age 10 or so often having great difficulty with proportion, probability, area and division.

Neurological differences between children and adults

Part of the problems children have with math stems from developmental constraints — their brains simply aren’t ready for some concepts. A recent imaging study of young people (aged 8-19 years) engaged in mental arithmetic, found that on simple two-operand addition or subtraction problems (for which accuracy was comparable across age), older subjects showed greater activation in the left parietal cortex, along the supramarginal gyrus and adjoining anterior intra-parietal sulcus as well as the left lateral occipital temporal cortex. Younger subjects showed greater activation in the prefrontal cortex (including the dorsolateral and ventrolateral prefrontal cortex and the anterior cingulate cortex), suggesting that they require comparatively more working memory and attentional resources to achieve similar levels of performance, and greater activation of the hippocampus and dorsal basal ganglia, reflecting the greater demands placed on both declarative and procedural memory systems.

In other words, the evidence suggests that the left inferior parietal cortex becomes increasingly specialized for mental arithmetic with practice, and this process is accompanied by a reduced need for memory and attentional resources.

Not just a matter of brain maturation

But this isn't the whole story. As the earlier example indicated, difficulties in understanding some concepts are often caused by the way the concepts are explained. This is why it’s so important to keep re-phrasing problems and ideas until you find one that “clicks”. Other difficulties are caused by the preconceptions the child brings with them — cultural practices, for example, can sometimes help and sometimes hinder learning.

Other domains: neurological differences between children and adults

What's true of mathematics is also true of other learning areas. When we teach children, we do need to consider developmental constraints, but recent studies suggest we may have over-estimated the importance of development.

In an intriguing imaging study, brain activity in children aged 7-10 and adults (average age 25 years) while doing various language tasks was compared. Six sub-regions in the left frontal and the left extrastriate cortex were identified as being significant. Both these areas are known to play a key role in language processing and are believed to undergo substantial development between childhood and adulthood.

Now comes the interesting part. The researchers attempted to determine whether these differences between children and adults were due to brain maturation or simply the result of slower and less accurate performance by children. By using information regarding each individual's performance on various tasks, they ended up with only two of the six sub-regions (one in the frontal cortex, one in the extrastriate cortex) showing differences that were age-related rather than performance-related (with the extrastriate region being more active in children than adults, while the frontal region was active in adults and not in children).

The researchers concluded that, yes, children do appear to use their brains differently than adults when successfully performing identical language tasks; however, although multiple regions appeared to be differentially active when comparing adults and children, many of those differences were due to performance discrepancies, not age-related maturation.

Childhood amnesia

Let's talk about childhood amnesia for a moment. "Childhood amnesia" is a term for what we all know -- we have very few memories of our early years. This is so familiar, you may never have considered why this should be so. But the reason is not in fact obvious. Freud speculated that we repressed those early memories (but Freud was hung up on repression); modern cognitive psychologists have considered immature memory processing skills may be to blame. This is surely true for the first months -- very young babies have extremely limited abilities at remembering anything for long periods of time (months), and research suggests that the dramatic brain maturation that typically occurs between 8 and 12 months is vital for long-term memory.

But an intriguing study (carried out by researchers at my old stomping ground: the University of Otago in New Zealand) has provided evidence that an important stumbling block in our remembrance of our early years is the child's grasp of language. If you don't have the words to describe what has happened, it seems that it is very difficult to encode it as a memory -- or at least, that it is very difficult to retrieve (before you leap on me with examples, let me add that noone is saying that every memory is encoded in words -- this is palpably not true).

This finding is supported by a recent study that found that language, in the form of specific kinds of sentences spoken aloud, helped 4-year-old children remember mirror image visual patterns.

The role of social interaction in memory development

Another study from my favorite university looked at the role mothers played in developing memory in their young children. The study distinguished between reminiscing (discussing shared experiences) and recounting (discussing unshared experiences). Children 40 months old and 58 months old were studied as they talked about past events with their mothers. It was found that mothers who provided more memory information during reminiscing and requested more memory information during recounting had children who reported more unique information about the events.

In general, parents seldom try to teach memory strategies directly to children, but children do learn strategies by observing and imitating what their parents do and this may in fact be a more effective means of teaching a child rather than by direct instruction.

But parents not only provide models of behavior; they also guide their children's behavior. The way they do this is likely to be influenced by their own beliefs about their children’s mnemonic abilities. If you don't believe your child can possibly remember something, you are unlikely to ask them to make the effort. But when parents ask 2 – 4 year olds to remind them to do something in the future, even 2 year olds remember to remind their parents of promised treats 80% of the time.

By 3 yrs old, children whose mothers typically asked questions about past events performed better on memory tasks than those children whose mothers only questioned them about present events. Observation of mothers as they taught their 4 year olds to sort toys, copy etch-a-sketch designs, and respond to questions regarding hypothetical situations found 3 interaction styles found that related to the child’s performance:

• imperative-normative, in which mother gave little justification for requests or demands;
• subjective, in which mother encouraged child to see his own behaviour from another’s point of view;
• cognitive-rational, in which mother offered logical justifications for requests and demands.

Children whose mothers used the last two styles were more verbal and performed better on cognitive tasks.

A study of kindergarten and elementary school teachers found that children from classes where teachers frequently made strategy suggestions were better able to verbalize aspects of memory training and task performance. Although this made no difference for high achieving children, average and low achievers were more likely to continue using the trained strategy if they had teachers who frequently made strategy suggestions.

Conclusion

What lessons can we learn from all this?

First, we must note that there are indeed developmental constraints on children's capabilities that are rooted in physical changes in the brain. Some of these are simply a matter of time, but others are changes that require appropriate stimulation and training.

Secondly, the importance of language in enabling the child cannot be overestimated.

And thirdly, for children as with older adults, expectations about memory performance can reduce their capabilities. Supportive, directed assistance in developing memory and reasoning strategies can be very effective in helping even very young children.

References:

• Best, D.L. 1992. The role of social interaction in memory improvement. In D. Herrmann, H. Weingartner, A. Searleman & C. McEvoy (eds.) Memory Improvement: Implications for Memory Theory. New York: Springer-Verlag. pp 122-49.
• Liston, C. & Kagan, J. 2002. Brain development: Memory enhancement in early childhood. Nature, 419, 896-896.
• Reese, E. & Brown, N. 2000. Reminiscing and recounting in the preschool years. Applied Cognitive Psychology, 14 (1), 1-17.
• Rivera, S.M., Reiss, A.L., Eckert, M.A. & Menon, V. 2005. Developmental Changes in Mental Arithmetic: Evidence for Increased Functional Specialization in the Left Inferior Parietal Cortex. Cerebral Cortex, 15 (11), 1779-1790.
• Schlaggar, B.L., Brown, T.T., Lugar, H.M., Visscher, K.M., Miezin, F.M. & Petersen, S.E. 2002. Functional neuroanatomical differences between adults and school-age children in the processing of single words. Science, 296, 1476-9.
• Vergnaud, G. 1997. The Nature of Mathematical Concepts. In T. Nunes & P. Bryant (Eds.), Learning and Teaching Mathematics: An International Perspectives (pp. 5-28). Eastern Sussex: Psychology Press Ltd.

Mnemonics for Children

Use of visual imagery in children

Research into whether young children can improve recall by using visual imagery has produced mixed results. It would seem that, in general, the instruction to generate mental images does not improve recall in children 5 yrs and younger, but does improve recall in children 8 years and above. Children of six and seven appear to be at a transitional stage whereby some children can use the strategy effectively in some situations.

Danner FW & Taylor AM. 1973. Integrated pictures and relational imagery training in children’s learning. Journal of Experimental Child Psychology, 16, 47-54.

Finding: trained 1st, 3rd and 6th graders to use interactive imagery to recall sets of three concrete nouns. There were three different training methods:

(1) The children were trained to generate their own interactive images, by drawing three integrated pictures of the separate pictures of nouns. For the first practice set they were shown an example of an integrated picture. The experimenter asked them to describe the relationship between the three items, then cued recall of two items with a picture of the third. There were two more practice sets, in which the child received encouragement and correction.

(2) The children were shown three integrated pictures (each showing integration of three items). Each picture was presented for 20 seconds, during which the items were named and the child asked to remember them. Recall of two items was cued by showing a picture of the third.

(3) The children were simply presented with integrated pictures.

It was found that 6th graders recalled more when required to generate own images (i.e., trained using method 1). For 1st and 3rd graders, methods 1 and 2 were equally good for training. Since pictures are usually more effective than visual imagery for these ages, these results indicate the benefits of training. It’s worth noting that only 15-20 seconds were given for the child to generate their own image, and greater benefits might well have been apparent if the child had been given more time.

Use of the story (sentence) mnemonic

The story, or sentence, mnemonic is a verbal mnemonic in which words to be remembered are linked together in a sentence or sentences. It is an effective strategy for learning a list of words.

The research confirms that memory even in very young children can be helped by teaching them to use this verbal mnemonic strategy.

It is more effective if the words (usually nouns) are linked by verbs rather than prepositions — simply stringing together words like this: The cat and the banana and the boat were in the sky” is much less memorable than composing: “The cat ate the banana and tossed the boat into the sky.”

Sentence mnemonics have been effectively used by 6th graders (10 year olds) to remember the correct spelling of words.

Levin JR & Rohwer WD 1968. Verbal organization and the facilitation of serial learning. Journal of Educational Psychology, 59, 186-91.

Finding: gave 4th and 5th graders a sentence mnemonic to recall 14 nouns. For example, the grey cat/jumped over the log/and crossed the street/to find the bowl/of cold milk/under the chair/in the new house/by the blue lake/where the young boy/lost his left shoe/while eating the fish/on the wooden boat/during the storm/that came last year. Recall of the 14 nouns was better using the sentence mnemonic than simply learning the list of nouns.

Negin GA 1978. Mnemonics and demonic words. Reading Improvement, 15, 180-2.

Finding: used sentence mnemonics to reduce spelling errors. Ten misspelled words were selected from 6th graders’ written assignments. The children were given two hours’ instruction on the use of sentence mnemonics in remembering spelling. They were given examples such as, “She screamed EEE as she passed the cemetery”; “StationERy is for a lettER”; “My skin shows resisTANce to a TAN”. They were told they could use two sentences if it was too hard to put in one. They were instructed to compare their misspellings with the proper form, locate the discrepancy, create a sentence associating the word with the correct spelling and rehearse the sentence. Their learning was compared with a group of children who were told to compare misspellings with the correct form, write each word in a meaningful sentence, underline the difficult section and rehearse the word. After each practice session, the children formed pairs and dictated words to each other. After six weeks, there was no significant difference in performance between the two groups, but after ten weeks, the children using mnemonics performed significantly better.

Pressley M. 1982. Elaboration and memory development. Child Development, 53, 296-309.

Finding: reviewed the research and concluded that even nursery school children improved in their learning when instructed to generate verbal elaborations.

Rohwer WD 1966. Constraint, syntax, and meaning in paired-associate learning. Journal of Verbal Learning & Verbal Behavior, 5, 541-7. Rohwer WD 1970. Images and pictures in children’s learning: Research results and educational implications. Psychology Bulletin, 73, 393-403.

Finding: sentence mnemonics using verbs (e.g., the dog closes the gate) helped remembering more than sentences using prepositions to join the nouns (e.g. the dog and the gate).

Use of the keyword mnemonic

The keyword method is one of the most successful mnemonic strategies to be used in education. It is of proven effectiveness as a method of learning new words, foreign language words, and social studies facts. As a technique for learning new words, it has been compared with the following common strategies:

• learning words in context
• finding root words
• learning synonyms and antonyms
• presenting words in meaningful sentences
• having students discriminate correct from incorrect use of words in sentences and
• having students generate their own meaningful sentences

and is apparently more effective than any of these methods.

The keyword mnemonic has been used effectively by 4th graders (8 year olds). When pictures have been provided, it has been used effectively by 2nd graders. It is suggested that, for children 10 years and younger, instructions to visualize are supplemented by illustrating pictures.

McGivern 1981 (unpublished)

Finding: Children with greater vocabulary knowledge benefited more from generating their own keywords than being provided with them, whereas children with smaller vocabularies experienced comparable benefits from generated and provided keywords.

Levin JR 1981. The mnemonic ‘80’s: Keywords in the classroom. Educational Psychologist, 16, 65-82.

Finding: suggested that as it becomes more difficult to derive keywords, it is probable that provided keywords (rather than generated) would be more effective.

Levin, J.R., Shriberg, L.K., Miller, G.E., McCormack, C.B. & Levin, B.B. 1980. The keyword method in the classroom: How to remember the states and their capitals. The Elementary School Journal, 82, 185-91.

Finding: Studies of 2nd and 6th graders and adults have found providing pictures of interaction between the keyword and the word representing the meaning of foreign word leads to higher recall than having the person generate their own image. Keyword method successfully used with whole classrooms and small groups of elementary and junior high students. Has been employed by 8th graders to attach a persons name to a number of pieces of biographical info.

Johnson RE 1974.Abstractive processes in the remembering of prose. Journal of Educational Psychology, 66, 772-9.

Finding: the keyword method produces better results than those obtained by: (a) learning words in context (b) finding root words, and (c) learning synonyms and antonyms

Pressley M Levin J & Miller G 1982. The keyword method compared to alternative vocabulary-learning strategies. Contemporary Educational Psychology, 7, 213-26.

Finding: the keyword method produces better results than those obtained by: (d) presenting words in meaningful sentences (e) having students discriminate correct from incorrect use of words in sentences and (f) having students generate their own meaningful sentences.

Levin JR McCormick CB Miller GE Berry JK & Pressley M. 1982. Mnemonic versus nonmnemonic vocabulary-learning strategies for children. American Educational Research Journal, 19, 121-36.

Levin, J.R., Shriberg, L.K., Miller, G.E., McCormack, C.B. & Levin, B.B. 1980. The keyword method in the classroom: How to remember the states and their capitals. The Elementary School Journal, 82, 185-91.

Finding: An adaptation of the keyword method was used to teach 4th and 5th graders the US states and their capitals. Step 1: the student formed an association between the name of the state and the keyword (e.g. marry for Maryland). Step 2: the student formed an association between the name of the capital and a different keyword (e.g., apple for Annapolis). The two keywords were then shown linked by a visual image (a line-drawing in which the two keyword referents were related, e.g. “The capital of Maryland is Annapolis. Here is a picture of two apples getting married”). When learning capitals, students were asked to recall the capital from the keyword, rather than the other way around, as they would ultimately be tested for recall of the capital for each state. Because backward keyword learning is more difficult, students were given up to five trials. They learned 12 capital-state pairs on the 1st day, and on 2nd day they were given 13 more, and told to learn them any way they wished. It appeared the students did not try to transfer the keyword method; the one student who did, did so ineffectively. This is not a surprising result, since they had been given the keywords and pictures, and hadn’t been taught how to produce them themselves. Results of the 1st day: those who learned using the keyword method recalled on average 78% correct vs 65.9% for those not trained in the keyword method. After two days, the keyword group remembered some 71.2%, while the nonmnemonic group's performance had fallen to 36.4%. Clearly the keyword method is of most benefit in retaining information.

Pressley M Levin J & Miller G 1981. How does the keyword method affect vocabulary comprehension and usage? Reading Research Quarterly, 16, 213-26.

Finding: suggested guidelines for using the keyword method with children: concrete stimulus support needed (especially for children 10 years and younger). Instructions to visualize may need to be supplemented by experimenter-provided illustrations etc.

Pressley & Levin 1978. Developmental constraints associated with children’s use of the keyword method of foreign language vocabulary learning. Journal of Experimental Child Psychology, 26, 359-72.

Finding: taught 2nd and 6th graders the keyword method to learn Spanish words. They found that the 2nd graders didn’t benefit when keywords and translations were presented verbally, but did when presented pictorially. The 6th graders were fine with both.

Levin JR Shriberg LK Miller GE McCormack CB & Levin BB 1980. The keyword method in the classroom: How to remember the states and their capitals. The Elementary School Journal, 82, 185-91.

Finding: taught 8th graders abstract attributes of towns (e.g., considerable wealth, abundant natural resources). Results indicated that pictures in which attributes were separately represented didn’t help recall. Recall was much better when the attributes were combined in a picture that incorporated the keyword.

Kids with autism mimic ‘more efficiently’

We say so blithely that children learn by copying, but a recent study comparing autistic children and normally-developing ones shows there’s more to this than is obvious.

04/2013