Strategies

Drawing best encoding strategy

  • Even quick and not particularly skilled sketches make simple information significantly more likely to be remembered, probably because drawing incorporates several factors that are known to improve memorability.

In a series of experiments involving college students, drawing pictures was found to be the best strategy for remembering lists of words.

The basic experiment involved students being given a list of simple, easily drawn words, for each of which they had 40 seconds to either draw the word, or write it out repeatedly. Following a filler task (classifying musical tones), they were given 60 seconds to then recall as many words as possible. Variations of the experiment had students draw the words repeatedly, list physical characteristics, create mental images, view pictures of the objects, or add visual details to the written letters (such as shading or other doodles).

In all variations, there was a positive drawing effect, with participants often recalling more than twice as many drawn than written words.

Importantly, the quality of the drawings didn’t seem to matter, nor did the time given, with even a very brief 4 seconds being enough. This challenges the usual explanation for drawing benefits: that it simply reflects the greater time spent with the material.

Participants were rated on their ability to form vivid mental images (measured using the VVIQ), and questioned about their drawing history. Neither of these factors had any reliable effect.

The experimental comparisons challenge various theories about why drawing is beneficial:

  • that it processes the information more deeply (when participants in the written word condition listed semantic characteristics of the word, thus processing it more deeply, the results were no better than simply writing out the word repeatedly, and drawing was still significantly better)
  • that it evokes mental imagery (when some students were told to mentally visualize the object, their recall was intermediate between the write and draw conditions)
  • that it simply reflects the fact that pictures are remembered better (when some students were shown a picture of the target word during the encoding time, their recall performance was not significantly better than that of the students writing the words)

The researchers suggest that it is a combination of factors that work together to produce a greater effect than the sum of each. These factors include mental imagery, elaboration, the motor action, and the creation of a picture. Drawing brings all these factors together to create a stronger and more integrated memory code.

http://www.eurekalert.org/pub_releases/2016-04/uow-ntr042116.php

Reference: 

[4245] Wammes JD, Meade ME, Fernandes MA. The drawing effect: Evidence for reliable and robust memory benefits in free recall. The Quarterly Journal of Experimental Psychology [Internet]. 2016 ;69(9):1752 - 1776. Available from: http://dx.doi.org/10.1080/17470218.2015.1094494

Source: 

tags memworks: 

tags study: 

Topics: 

tags strategies: 

Tell a friend what you learned

  • A single instance of retrieval, right after learning, is enough to significantly improve your memory, and stop the usual steep forgetting curve for non-core information.

A study involving 60 undergraduate students confirms the value of even a single instance of retrieval practice in an everyday setting, and also confirms the value of cues for peripheral details, which are forgotten more readily.

In three experiments involving 20 undergraduate students, students were shown foreign or otherwise obscure movie clips that contained scenes of normal everyday events. The 24-second clips from 40 films were shown over a period of about half an hour. After a delay of either several minutes, three days, or seven days, the students were questioned on their memory of the general plot, as well as details such as sounds, colors, gestures, and background details that allow a person to re-experience an event in rich and vivid detail.

In the second experiment, students were given a brief visual cue, such as a simple glimpse of the title and a sliver of a screenshot, on testing. In the third experiment, students recalled the information soon after viewing, in addition to the later test.

Researcher found:

  • Peripheral details were, unsurprisingly, forgotten more quickly, and to a greater degree.
  • But those given cues did better at remembering peripheral details.
  • Cues didn’t significantly affect the memory of more substantial matters.
  • Those who retrieved their memories soon after viewing showed no forgetting of peripheral information.
  • Interestingly, these students still assumed they had forgotten a lot (confirming once again, that we're not great at judging our own memory)!

The finding confirms the value of even a single instance of retrieval practice, even without any delay. Note that memory was tested after a week. For longer recall, additional retrieval practice is likely to be needed — but it's probably fair to say that it's that first instance of retrieval that has the biggest effect. I discuss all this in much greater detail in my book on practice.

It's also worth thinking about this in conjunction with the earlier report that there's a special benefit in recounting the information to another person.

https://www.eurekalert.org/pub_releases/2017-01/bu-wta011717.php

Reference: 

Source: 

tags memworks: 

tags study: 

Topics: 

tags strategies: 

Repeating aloud to another person boosts recall

  • The simple act of repeating something to another person helps you remember it, more than if you just repeated it to yourself.

A Canadian study involving French-speaking university students has found that repeating aloud, especially to another person, improves memory for words.

In the first experiment, 20 students read a series of words while wearing headphones that emitted white noise, in order to mask their own voices and eliminate auditory feedback. Four actions were compared:

  • repeating silently in their head
  • repeating silently while moving their lips
  • repeating aloud while looking at the screen
  • repeating aloud while looking at someone.

They were tested on their memory of the words after a distraction task. The memory test only required them to recognize whether or not the words had occurred previously.

There was a significant effect on memory. The order of the conditions matches the differences in memory, with memory worst in the first condition, and best in the last.

In the second experiment, 19 students went through the same process, except that the stimuli were pseudo-words. In this case, there was no memory difference between the conditions.

The effect is thought to be due to the benefits of motor sensory feedback, but the memory benefit of directing your words at a person rather than a screen suggests that such feedback goes beyond the obvious. Visual attention appears to be an important memory enhancer (no great surprise when we put it that way!).

Most of us have long ago learned that explaining something to someone really helps our own understanding (or demonstrates that we don’t in fact understand it!). This finding supports another, related, experience that most of us have had: the simple act of telling someone something helps our memory.

http://www.eurekalert.org/pub_releases/2015-10/uom-rat100615.php

Reference: 

tags memworks: 

Topics: 

tags strategies: 

Improve learning with co-occurring novelty

  • An animal study shows that following learning with a novel experience makes the learning stronger.
  • A human study shows that giving information positive associations improves your memory for future experiences with similar information.

We know that the neurotransmitter dopamine is involved in making strong memories. Now a mouse study helps us get more specific — and suggests how we can help ourselves learn.

The study, involving 120 mice, found that mice tasked with remembering where food had been hidden did better if they had been given a novel experience (exploring an unfamiliar floor surface) 30 minutes after being trained to remember the food location.

This memory improvement also occurred when the novel experience was replaced by the selective activation of dopamine-carrying neurons in the locus coeruleus that go to the hippocampus. The locus coeruleus is located in the brain stem and involved in several functions that affect emotion, anxiety levels, sleep patterns, and memory. The dopamine-carrying neurons in the locus coeruleus appear to be especially sensitive to environmental novelty.

In other words, if we’re given attention-grabbing experiences that trigger these LC neurons carrying dopamine to the hippocampus at around the time of learning, our memories will be stronger.

Now we already know that emotion helps memory, but what this new study tells us is that, as witness to the mice simply being given a new environment to explore, these dopamine-triggering experiences don’t have to be dramatic. It’s suggested that it could be as simple as playing a new video game during a quick break while studying for an exam, or playing tennis right after trying to memorize a big speech.

Remember that we’re designed to respond to novelty, to pay it more attention — and, it seems, that attention is extended to more mundane events that occur closely in time.

Emotionally positive situations boost memory for similar future events

In a similar vein, a human study has found that the benefits of reward extend forward in time.

In the study, volunteers were shown images from two categories (objects and animals), and were financially rewarded for one of these categories. As expected, they remembered images associated with a reward better. In a second session, however, they were shown new images of animals and objects without any reward. Participants still remembered the previously positively-associated category better.

Now, this doesn’t seem in any way surprising, but the interesting thing is that this benefit wasn’t seen immediately, but only after 24 hours — that is, after participants had slept and consolidated the learning.

Previous research has shown similar results when semantically related information has been paired with negative, that is, aversive stimuli.

https://www.eurekalert.org/pub_releases/2016-09/usmc-rim090716.php

http://www.eurekalert.org/pub_releases/2016-06/ibri-eps061516.php

Reference: 

Source: 

tags memworks: 

Topics: 

tags strategies: 

Sleep helps you remember new names

  • A small study has found that a night's sleep helps you better remember new names.

Sleep, as I have said on many occasions, helps your brain consolidate new memories. I have reported before on a number of studies showing how sleep helps the learning of various types of new information. Most of those studies have looked at procedural learning (learning new skills), or verbal learning. A new study adds to these by looking at face-name associations.

The small study, involving 14 young adults, found that that they were significantly better at remembering faces and names if they were given an opportunity to have a full night's sleep hours after seeing those faces and names for the first time.

Participants were shown 20 photos of faces with corresponding names and asked to memorize them. After a twelve-hour period, they were then shown the photos again with either a correct or incorrect name. They were also asked to rate their confidence in their answer. Each participant completed the test twice — once with an interval of sleep in between and once with a period of regular, waking day activities in between.

After a night's sleep, participants correctly matched 12% more of the faces and names, and were much more confident of their answers.

Of course, this is not a huge difference, given the small number of face-name pairs, and the sample is small. I would have also liked to see further testing 12 hours later, so that we could compare the effects of a day followed by a night, versus a night followed by a day (this would have required more stimuli and more participants, of course).

So, not madly exciting, but taken in context of other research, it adds to the growing evidence that sleep helps you consolidate new learning of all kinds.

http://www.eurekalert.org/pub_releases/2015-11/bawh-wtr112315.php

Reference: 

Topics: 

tags strategies: 

tags lifestyle: 

tags memworks: 

Mindfulness may increase susceptibility to false memories

  • Mindfulness meditation is associated in many studies with cognitive benefits, especially in attention.
  • In a new study, a brief guided meditation exercise increased students' false recognition of words as ones they had seen earlier.
  • It may be that the non-judgmental mindset encouraged by mindfulness meditation reduces people's ability to clearly remember the source of a memory, thus making them more susceptible to false memories.
  • Source memory also tends to be negatively affected by increasing age.

Mindfulness meditation is associated with various positive benefits, one of which is improved attention, but it might not be all good. A new study suggests that it may have negative cognitive consequences.

The study included three experiments, in the first two of which undergraduates carried out a 15-minute guided exercise: one group was instructed to focus attention on their breathing without judgment (mindfulness group); the other group was told to think about whatever came to mind (mind-wandering group; the control).

In the first experiment, 153 participants then studied a list of 15 words related to the concept of trash, but not including the word "trash". When then asked to recall as many of the words from the list as they could remember, 39% of the mindfulness group falsely recalled seeing the word "trash" on the list compared to only 20% of the mind-wandering group. There was no difference between the groups in the number of other words falsely recalled.

In the second experiment, 140 participants were compared to themselves, before and after the intervention. They all began by doing six of the same sort of word lists. They were then randomly assigned either the meditation exercise or the mind-wandering. This was then followed by a further six word lists.

Again, mindfulness participants were more likely to falsely recall the critical word than those who engaged in mind wandering. Those in the mind-wandering group showed no difference in performance on the word lists before and after, while those in the meditation group were significantly more likely to falsely remember the critical item. Again, there were no other differences in performance between the groups: they correctly recalled about the same number of words, and they falsely remembered about the same number of other words.

In the third experiment, 215 undergraduates had to determine whether a word had been presented earlier, where the words shown were all part of a strongly associated pair (e.g., foot-shoe). After seeing the 100 words (for 1.5 seconds each), they were then tested. Each word had an equal chance of being one of the words in the presented list, or its associated pair. All students were then given the 15-minute meditation exercise, before going through the process again.

Again, the rate of words correctly identified as seen before was about the same before and after the meditation exercise, but the rate of words falsely identified increased significantly after the exercise.

In all, then, it seems that mindfulness meditation increased participants' susceptibility to false memories, reducing their ability to differentiate items they actually encountered from items they only imagined (because of their strong association to the items encountered).

The researchers speculate that the mechanism that seems to underlie the benefits of mindfulness — judgment-free thoughts and feelings — might also affect people's ability to determine the origin of a given memory (source memory), because they have become less able to distinguish between externally occurring events and internally generated events.

Source memory is one of those memory domains that tend to be affected by aging. However, the benefits of meditation for improving attention — another area particularly affected by age — outweigh this downside. So I'm certainly not suggesting anyone should be put off by this finding!

An interesting question that remains to be answered is whether this negative effect on source memory is short-lived, or whether experienced meditators tend to have poorer source memory.

http://www.eurekalert.org/pub_releases/2015-09/afps-mmm090915.php

Reference: 

tags problems: 

Topics: 

tags strategies: 

Movements and images improve new vocabulary learning

  • Foreign words are learned better when gestures or pictures are used.
  • Imitating symbolic gestures is more beneficial than viewing illustrative pictures.
  • These benefits correlate with activity in specific brain regions.
  • The benefits are only found in translation tasks, not in free recall.

A small study using an artificial language adds to evidence that new vocabulary is learned more easily when the learner uses gestures.

“Vimmish”, the artificial language used in the study, follows similar phonetic rules to Italian. The German-speaking participants were given abstract and concrete nouns to learn over the course of a week. In the first experiment, the 21 subjects heard the words and their translations under one of three conditions:

  • with a video showing a symbolic gesture of the word's meaning, which they imitated
  • with a picture illustrating the word's meaning, which they traced in the air
  • with no gestures or pictures.

On the 8th day, the participants were tested while their brain activity was monitored. The test involved hearing the foreign word, then selecting the correct translation from four written options.

The researchers were interested in learning whether they could predict the learning condition from the brain activity patterns displayed when the participants were tested. They found that the gesture condition and control could be distinguished in two brain regions: a visual area that processes biological motion (part of the right superior temporal sulcus), and the left premotor cortex. Activity in these regions was also significantly correlated with performance. The picture condition and control could be distinguished in a visual area that processes objects (the right anterior lateral occipital cortex). There was a trend for this activity to correlate with performance, but it didn't reach significance.

Paper-and-pencil translation tests two and six months after learning showed that learning with gestures was significantly better than the other conditions. But note that there was no advantage for any condition in a free recall task.

A second experiment compared gesture and pictures in the more common picture scenario — participants only viewed the video or picture; there was no imitation. Unsurprisingly, there was no motor cortex involvement in this scenario: gesture and control conditions were distinguished only by activity in the biological motion part of the right superior temporal sulcus. The correlation of activity in the right anterior LOC with performance in the picture condition this time reached significance. But most importantly, this time the picture condition led to better translation accuracy than the other two conditions.

However, the most significant result is this: when both experiments were evaluated together, the gesture benefit in experiment 1 (when the participant copied the gesture) was greater than the picture benefit in the second experiment.

The findings are in keeping with other evidence that foreign words are learned more easily when multiple senses are involved.

http://www.eurekalert.org/pub_releases/2015-02/m-lwa020415.php

Reference: 

tags memworks: 

Topics: 

tags strategies: 

Implementation plans help those with low working memory capacity

  • Implementation plans are a strategy for helping you remember your intended future actions.
  • College students with low WMC performed a prospective memory task at the same level as those with a higher WMC, but only when they used a simple implementation plan.

I've written at length about implementation plans in my book “Planning to Remember: How to Remember What You're Doing and What You Plan to Do”. Essentially, they're intentions you make in which you explicitly tie together your intended action with a specific situational cue (such as seeing a post box).

A new study looked at the benefits of using an implementation intention for those with low working memory capacity.

The study involved 100 college students, of whom half were instructed to form an implementation intention in the event-based prospective memory task. The task was in the context of a lexical decision task in which the student had to press a different key depending on whether a word or a pseudo-word was presented, and to press the spacebar when a waiting message appeared between each trial. However (and this is the prospective element), if they saw one of four cue words, they were to stop doing the lexical task and say aloud both the cue word and its associated target word. They were then given the four word pairs to learn.

After they had mastered the word pairs, students in the implementation intention group were also given various sentences to say aloud, of the form: “When I see the word _______ (hotel, eraser, thread, credit) while making a word decision, I will stop doing the lexical decision task and call out _____-______ (hotel-glass, eraser-pencil, thread-book, credit-card) to the experimenter during the waiting message.” They said each sentence (relating to each word pair) twice.

Both groups were given a 5-minute survey to fill out before beginning the trials. At the end of the trials, their working memory was assessed using both the Operation Span task and the Reading Span task.

Overall, as expected, the implementation intention group performed significantly better on the prospective memory task. Unlike other research, there was no significant effect of working memory capacity on prospective memory performance. But this is because other studies haven't used implementation intentions — among those who made no such implement plans, low working memory capacity did indeed negatively affect prospective memory performance. However, those with low working memory capacity did just as well as those with high WMC when they formed implementation intentions (in fact, they did slightly better).

The most probable benefit of the strategy is that it heightened sensitivity to the event cues, something which is of particular value to those with low working memory capacity, who by definition have poorer attentional control.

It should be noted that this was an attentionally demanding task — there is some evidence that working memory ability only relates to prospective memory ability when the prospective memory task requires a high amount of attentional demand. But what constitutes “attentionally demanding” varies depending on the individual.

Perhaps this bears on evidence suggesting that a U-shaped function might apply, with a certain level of cognitive ability needed to benefit from implementation intentions, while those above a certain level find them unnecessary. But again, this depends on how attentionally demanding the task is. We can all benefit from forming implementation intentions in very challenging situations. It should also be remembered that WMC is affected not only more permanently by age, but also more temporarily by stress, anxiety, and distraction.

Of course, this experiment framed the situation in a very short-term way, with the intentions only needing to be remembered for about 15 minutes. A more naturalistic study is needed to confirm the results.

Reference: 

tags memworks: 

Topics: 

Unfamiliar accents can make spoken words harder to remember

This is just a preliminary study presented at a recent conference, so we can't give it too much weight, but the finding is consistent with what we know about working memory, and it is of some usefulness.

The study tested the ability of young-adult native English speakers to store spoken words in short-term memory. The English words were spoken either with a standard American accent or with a pronounced but still intelligible Korean accent. Every now and then, the listeners (all unfamiliar with a Korean accent) would be asked to recall the last three words they had heard.

While there was no difference for the last and second-last words, the third word back was remembered significantly better when it was spoken in the familiar accent (80% vs 70%).

The finding suggests that the effort listeners needed to put into understanding the foreign accent used up some of their working memory, reducing their ability to hold onto the information.

The finding is consistent with previous research showing that people with hearing difficulties or who are listening in difficult circumstances (such as over a bad phone line or in a loud room) are poorer at remembering and processing the spoken information compared to individuals who are hearing more clearly.

On a practical level, this finding suggests that, if you're receiving important information (for example, medical information) from someone speaking with an unfamiliar accent, you should make special efforts to remember and process the information. For example, by asking them to speak more slowly, by taking notes and asking for clarification, etc. Those providing such information should take on board the idea that if their listeners are likely to be unfamiliar with their accent, they need to take greater care to speak slowly and clearly, with appropriate levels of repetition and elaboration. Gestures are also helpful for reducing the load on working memory.

http://www.eurekalert.org/pub_releases/2015-05/asoa-htu050715.php

Reference: 

Van Engen, K. et al. 2015. Downstream effects of accented speech on memory. Presentation 1aSC4 at the 169th meeting of the Acoustical Society of America, held May 18-22, 2015 in Pittsburgh, Pennsylvania.

Source: 

tags memworks: 

Topics: 

tags strategies: 

Evidence for the benefits of meditation in fighting age-related cognitive decline

A review of meditation research reported in January last year concluded that there were insufficient good studies to allow us to say that meditation clearly improves attention and cognition. Studies from 2014 suggest three factors that might be part of the reason for inconsistent research findings:

tags strategies: 

Topics: 

Pages

Subscribe to RSS - Strategies