computers

Digital media may be changing how you think

  • Reading from a screen may encourage users to focus on concrete details rather than more abstract thinking.

Four studies involving a total of more than 300 younger adults (20-24) have looked at information processing on different forms of media. They found that digital platforms such as tablets and laptops for reading may make you more inclined to focus on concrete details rather than interpreting information more abstractly.

As much as possible, the material was presented on the different media in identical format.

In the first study, 76 students were randomly assigned to complete the Behavior Identification Form on either an iPad or a print-out. The Form assesses an individual's current preference for concrete or abstract thinking. Respondents have to choose one of two descriptions for a particular behavior — e.g., for “making a list”, the choice of description is between “getting organized” or “writing things down”. The form presents 25 items.

There was a marked difference between those filling out the form on the iPad vs on a physical print-out, with non-digital users showing a significantly higher preference for abstract descriptions than digital users (mean of 18.56 vs 13.75).

In the other three studies, the digital format was always a PDF on a laptop. In the first of these, 81 students read a short story by David Sedaris, then answered 24 multichoice questions on it, of which half were abstract and half concrete. Digital readers scored significantly lower on abstract questions (48% vs 66%), and higher on concrete questions (73% vs 58%).

In the next study, 60 students studied a table of information about four, fictitious Japanese car models for two minutes, before being required to select the superior model. While one model was objectively superior in regard to the attributes and attribute rating, the amount of detail means (as previous research has shown) that those employing a top-down “gist” processing do better than those using a bottom-up, detail-oriented approach. On this problem, 66% of the non-digital readers correctly chose the superior model, compared to 43% of the digital readers.

In the final study, 119 students performed the same task as in the preceding study, but all viewed the table on a laptop. Before viewing the table, however, some were assigned to one of two priming activities: a high-level task aimed at activating more abstract thinking (thinking about why they might pursue a health goal), or a low-level task aimed at activating more concrete thinking (thinking about how to pursue the same goal).

Being primed to think more abstractly did seem to help these digital users, with 48% of this group correctly answering the car judgment problem, compared to only 25% of those given the concrete priming activity, and 30% of the control group.

I note that the performance of the control group is substantially below the performance of the digital users in the previous study, although there was no apparent change in the methodology. However, this was not noted or explained in the paper, so I don't know why this was. It does lead me not to put too much weight on this idea that priming can help.

However, the findings do support the view that reading on digital devices does encourage a more concrete style of thinking, reinforcing the idea that we are inclined to process information more shallowly when we read it from a screen.

Of course, this is, as the researchers point out, not an indictment. Sometimes, this is the best way to approach certain tasks. But what it does suggest is that we need to consider what sort of processing is desirable, and modify our strategy accordingly. For example, you may find it helpful to print out material that requires a high level of abstract thinking, particularly if your degree of expertise in the subject means that it carries a high cognitive load.

http://www.eurekalert.org/pub_releases/2016-05/dc-dmm050516.php

Reference: 

Kaufman, G., & Flanagan, M. (2016). High-Low Split : Divergent Cognitive Construal Levels Triggered by Digital and Non-digital Platforms. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1–5. doi:10.1145/2858036.2858550 http://dl.acm.org/citation.cfm?doid=2858036.2858550

Topics: 

tags memworks: 

tags strategies: 

tags study: 

Each hour of screen time linked to poorer grades

  • A large study found teenagers' grades suffered significantly and linearly, for each hour spent watching TV, using the internet or playing computer games.
  • Of these activities, the most harmful was watching TV.
  • Hours spent doing homework or reading for pleasure were each associated with a significant increase in GCSE grades.
  • The amount of moderate-to-vigorous physical activity had no effect on grades.

A study involving 845 secondary school students has revealed that each hour per day spent watching TV, using the internet or playing computer games at average age 14.5 years was associated with poorer GCSE grades at age 16. Additionally, each hour of daily homework and reading was linked to significantly better grades. Surprisingly, however, the amount of physical activity had no effect on academic performance.

Median screen time was four hours a day, of which around half was spent watching TV; median sedentary non-screen time (reading/homework) was 1.5 hours.

Each hour per day of time spent in front of the TV or computer in Year 10 was associated with 9.3 fewer GCSE points in Year 11 — the equivalent to two grades in one subject or one grade in each of two subjects. Two hours was therefore associated with 18 fewer points at GCSE, and the median of four hours, with a worrying 36 fewer points.

The burning question: are some screens better than others? Comparison of the different screen activities revealed that TV viewing was the most detrimental to grades.

More positively, each hour of daily homework and reading was associated with an average 23.1 more GCSE points. This was a U-shaped function, however, with pupils doing over four hours of reading or homework a day performing less well than their peers. But the number of pupils in this category was relatively low (only 52 pupils) and may include students who were struggling at school.

The benefits from spending time on homework or reading were not simply a consequence of spending less time staring at a screen; screen time and time spent reading or doing homework were independently associated with academic performance.

Do note that, although some homework was doubtless done on the computer, this was not counted as screen time for the purposes of this study.

The finding of no significant association between moderate to vigorous physical activity and academic performance is more surprising, given the evidence for the benefits of exercise and physical fitness for cognition. The median was 39 minutes of moderate to vigorous physical activity a day, with a quarter of the students getting less than 20 minutes a day, and a quarter getting more than 65 minutes.

The data used was from the ROOTS study, a large longitudinal study assessing health and wellbeing during adolescence. Objective levels of activity and time spent sitting were assessed through a combination of heart rate and movement sensing. Screen time, time spent doing homework, and reading for pleasure, relied on self-report. Medians were used rather than means, because of the degree of skew in the data.

http://www.eurekalert.org/pub_releases/2015-09/uoc-eho090115.php

Reference: 

Topics: 

tags development: 

tags lifestyle: 

tags strategies: 

The right sort of video game can increase your intelligence

June, 2011

Games that use the n-back task, designed to challenge working memory, may improve fluid intelligence, but only if the games are at the right level of difficulty for the individual.

It has been difficult to train individuals in such a way that they improve in general skills rather than the specific ones used in training. However, recently some success has been achieved using what is called an “n-back” task, a task that involves presenting a series of visual and/or auditory cues to a subject and asking the subject to respond if that cue has occurred, to start with, one time back. If the subject scores well, the number of times back is increased each round.

In the latest study, 62 elementary and middle school children completed a month of training on a computer program, five times a week, for 15 minutes at a time. While the active control group trained on a knowledge and vocabulary-based task, the experimental group was given a demanding spatial task in which they were presented with a sequence of images at one of six locations, one at a time, at a rate of 3s. The child had to press one key whenever the current image was at the same location as the one n items back in the series, and another key if it wasn’t. Both tasks employed themed graphics to make the task more appealing and game-like.

How far back the child needed to remember depended on their performance — if they were struggling, n would be decreased; if they were meeting the challenge, n would be increased.

Although the experimental and active control groups showed little difference on abstract reasoning tasks (reflecting fluid intelligence) at the end of the training, when the experimental group was divided into two subgroups on the basis of training gain, the story was different. Those who showed substantial improvement on the training task over the month were significantly better than the others, on the abstract reasoning task. Moreover, this improvement was maintained at follow-up testing three months later.

The key to success seems to be whether or not the games hit the “sweet spot” for the individual — fun and challenging, but not so challenging as to be frustrating. Those who showed the least improvement rated the game as more difficult, while those who improved the most found it challenging but not overwhelming.

You can try this task yourself at http://brainworkshop.sourceforge.net/.

Reference: 

Jaeggi, Susanne M, Martin Buschkuehl, John Jonides, and Priti Shah. “Short- and long-term benefits of cognitive training.” Proceedings of the National Academy of Sciences of the United States of America 2011 (June 13, 2011): 2-7. http://www.ncbi.nlm.nih.gov/pubmed/21670271.

[1183] Jaeggi, S. M., Buschkuehl M., Jonides J., & Perrig W. J.
(2008).  From the Cover: Improving fluid intelligence with training on working memory.
Proceedings of the National Academy of Sciences. 105(19), 6829 - 6833.

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags memworks: 

tags strategies: 

Children with home computers likely to have lower test scores

July, 2010

An American study suggests that getting a home computer can have a negative effect on reading and math scores in middle-grade students, particularly those from disadvantaged families.

Data from North Carolina's mandated End-of-Grade tests (2000-2005), which includes student reports on how frequently they use a home computer for schoolwork, watch TV or read for pleasure, reveals that students in grades five through eight (c.10-13), particularly those from disadvantaged families, tended to have lower reading and math scores after they got a home computer. The researchers suggest that the greater negative effect in disadvantaged households may reflect less parental monitoring.

Reference: 

[1635] Vigdor, J. L., & Ladd H. F.
(2010).  Scaling the Digital Divide: Home Computer Technology and Student Achievement.
National Bureau of Economic Research Working Paper Series. No. 16078,

Source: 

Topics: 

tags development: 

tags lifestyle: 

tags strategies: 

tags study: 

Subscribe to RSS - computers
Error | About memory

Error

The website encountered an unexpected error. Please try again later.