frontotemporal dementia

Frontotemporal Dementia

What is it?

Frontotemporal dementia is a disorder of the frontal lobes and includes what was known as primary progressive aphasia. Although it occurs far less often than Alzheimer's disease, among dementia sufferers younger than 65 it is estimated to occur at about the same rate. In other words, frontotemporal dementia is, unlike the most common dementias, not a disorder of age. Most sufferers become symptomatic in their 50s and 60s.

Frontotemporal dementia generally begins with a focal symptom, such as aphasia, before (usually a number of years later) progressing to more generalized dementia.

There are several types of frontotemporal dementia. The most common (around 60% of FTD cases) is known as the behavioral variant (also, Pick's disease). This is characterized by impairment in social and emotional skills. The other 40% of FTD cases have language impairments -- about half of these suffer from semantic FTD, characterized by difficulties in remembering the meanings of words; the other half suffer from progressive nonfluent aphasia, characterized by difficulties in producing language (although they understand what they're trying to say).

In around 15% of FTD cases (most usually the behavioral variant), motor neurone disease also develops.

Prevalence

A large-scale epidemiological study1 in the Netherlands indicated frontotemporal dementia occurs at a rate of 1.1 per 100,000, with the prevalence highest among those ages 60 to 69, at 9.4 per 100,000. The prevalence among people ages 45 to 64 was estimated to be 6.7 per 100,000 (this was after autopsies caused the number of diagnosed cases to go up, with 17 of 50 patients undiagnosed in life). Unlike other forms of dementia, where most occurrences begin in older adults, symptoms began after age 65 in only 22% of patients. The median age of onset was 58, with a range from 33 to 80.

A family history of dementia was present in 43% of patients. Interestingly, whites accounted for 99% of all cases despite an ample nonwhite population.

A large U.K. study2 found prevalences of early-onset FTD and Alzheimer's were the same in the 45-64 population: 15 per 100,000. The mean age at onset of FTD was 52.8 years and there was a striking male preponderance (14:3).

This rate is notably higher than that found in the Dutch study, and it has been suggested that the reason is ethnicity -- the Dutch study, as mentioned, had a significant proportion of non-Caucasians, while the British (Cambridge) study explicitly mentioned that minorities were under-represented.

It has been estimated that frontotemporal dementia accounts for approximately 8% of patients with dementia, but this is now thought to be an underestimation.

Genes as a factor

There is a high level of genetic involvement in this type of dementia.

As mentioned, the Dutch study found a family history of dementia in 43% of FTD patients. Another large Dutch study3 found 38% of FTD patients had one or more first-degree relatives with dementia before age 80 compared to 15% of age-matched controls; 10% had two or more first-degree relatives with dementia compared with 0.9% of the controls. FTD patients were also three times more likely to have 2 "Alzheimer's genes" (2 e4 alleles of the ApoE gene) than the controls: 7% vs 2.3%.

This study also supports findings with other dementias that earlier-onset is more likely to have genetic causes. First-degree relatives of FTD patients (who had twice the risk of dementia before age 80 compared with relatives of controls) were much more likely to develop dementia early: age of onset of dementia in affected first-degree relatives of FTD patients averaged was just under 61, compared to 72.3 for affected first-degree relatives of controls.

The genes implicated in familial cases of FTD are on chromosome 17, in the gene for the tau protein, and in the gene for the progranulin protein. Research4 has now confirmed that people with these hereditable defects produce only half of the normal amount of progranulin, and recently a simple test for measuring the quantity of progranulin in the blood was developed. The test reveals whether someone has the mutations that carry an increased risk of FTD.

A recent study5 involving 225 FTD patients found 41.8% of patients had some family history, although only 10.2% had a clear autosomal dominant history (at least 3 cases within the last 2 generations). However, the importance of genes varied across the different clinical subtypes of the disease, with the behavioral variant being the most heritable and FTD–motor neuron disease and the language syndromes (particularly semantic dementia) the least heritable.

For more information:

http://emedicine.medscape.com/article/1135164-overview

http://memory.ucsf.edu/ftd/

References: 

  1. Rosso, S.M. et al. 2003. Frontotemporal dementia in The Netherlands: Patient characteristics and prevalence estimates from a population-based study. Brain, 126, 2016-22. Full text available at http://brain.oxfordjournals.org/cgi/content/full/126/9/2016
  2. Ratnavalli, E., Brayne, C., Dawson, K. & Hodges, J.R. 2002. The prevalence of frontotemporal dementia. Neurology, 58, 1615-1621.
  3. Stevens, M. et al. 1998. Familial aggregation in frontotemporal dementia. Neurology, 50(6), 1541-5.
  4. Sleegers, K. et al. 2009. Serum biomarker for progranulin-associated frontotemporal lobar degeneration. Annals of Neurology, Published online March 13.
  5. Rohrer, J.D. et al. 2009. The heritability and genetics of frontotemporal lobar degeneration. Neurology, 73(18), 1451-1456.

Topics: 

tags problems: 

tags development: 

New biomarker shows Alzheimer's disease long before symptoms

Analysis of mitochondrial DNA (mtDNA) in the cerebrospinal fluid has found that both symptomatic Alzheimer’s patients and asymptomatic patients at risk of Alzheimer’s showed a significant decrease in levels of circulating cell-free mtDNA in the CSF.

Mynd: 

tags problems: 

tags development: 

Atypical form of Alzheimer's disease more common than thought

Analysis of 1,821 Alzheimer’s brains has found that 11% of them actually suffered from a variant called hippocampal sparing Alzheimer’s. This subtype has been neither well recognized nor treated appropriately, but is now revealed to be relatively common.

tags problems: 

Mynd: 

Genes, brain size, brain atrophy, and Alzheimer’s risk

May, 2012

A round-up of genetic news. Several genes are linked to smaller brain size and faster brain atrophy in middle- & old age. The main Alzheimer's gene is implicated in leaky blood vessels, and shown to interact with brain size, white matter lesions, and dementia risk. Some evidence suggests early-onset Alzheimer's is not so dissimilar to late-onset Alzheimer's.

Genetic analysis of 9,232 older adults (average age 67; range 56-84) has implicated four genes in how fast your hippocampus shrinks with age (rs7294919 at 12q24, rs17178006 at 12q14, rs6741949 at 2q24, rs7852872 at 9p33). The first of these (implicated in cell death) showed a particularly strong link to a reduced hippocampus volume — with average consequence being a hippocampus of the same size as that of a person 4-5 years older.

Faster atrophy in this crucial brain region would increase people’s risk of Alzheimer’s and cognitive decline, by reducing their cognitive reserve. Reduced hippocampal volume is also associated with schizophrenia, major depression, and some forms of epilepsy.

In addition to cell death, the genes linked to this faster atrophy are involved in oxidative stress, ubiquitination, diabetes, embryonic development and neuronal migration.

A younger cohort, of 7,794 normal and cognitively compromised people with an average age of 40, showed that these suspect gene variants were also linked to smaller hippocampus volume in this age group. A third cohort, comprised of 1,563 primarily older people, showed a significant association between the ASTN2 variant (linked to neuronal migration) and faster memory loss.

In another analysis, researchers looked at intracranial volume and brain volume in 8,175 elderly. While they found no genetic associations for brain volume (although there was one suggestive association), they did discover that intracranial volume (the space occupied by the fully developed brain within the skull — this remains unchanged with age, reflecting brain size at full maturity) was significantly associated with two gene variants (at loci rs4273712, on chromosome 6q22, and rs9915547, on 17q21). These associations were replicated in a different sample of 1,752 older adults. One of these genes is already known to play a unique evolutionary role in human development.

A meta-analysis of seven genome-wide association studies, involving 10,768 infants (average age 14.5 months), found two loci robustly associated with head circumference in infancy (rs7980687 on chromosome 12q24 and rs1042725 on chromosome 12q15). These loci have previously been associated with adult height, but these effects on infant head circumference were largely independent of height. A third variant (rs11655470 on chromosome 17q21 — note that this is the same chromosome implicated in the study of older adults) showed suggestive evidence of association with head circumference; this chromosome has also been implicated in Parkinson's disease and other neurodegenerative diseases.

Previous research has found an association between head size in infancy and later development of Alzheimer’s. It has been thought that this may have to do with cognitive reserve.

Interestingly, the analyses also revealed that a variant in a gene called HMGA2 (rs10784502 on 12q14.3) affected intelligence as well as brain size.

Why ‘Alzheimer’s gene’ increases Alzheimer’s risk

Investigation into the so-called ‘Alzheimer’s gene’ ApoE4 (those who carry two copies of this variant have roughly eight to 10 times the risk of getting Alzheimer’s disease) has found that ApoE4 causes an increase in cyclophilin A, which in turn causes a breakdown of the cells lining the blood vessels. Blood vessels become leaky, making it more likely that toxic substances will leak into the brain.

The study found that mice carrying the ApoE4 gene had five times as much cyclophilin A as normal, in cells crucial to maintaining the integrity of the blood-brain barrier. Blocking the action of cyclophilin A brought blood flow back to normal and reduced the leakage of toxic substances by 80%.

The finding is in keeping with the idea that vascular problems are at the heart of Alzheimer’s disease — although it should not be assumed from that, that other problems (such as amyloid-beta plaques and tau tangles) are not also important. However, one thing that does seem clear now is that there is not one single pathway to Alzheimer’s. This research suggests a possible treatment approach for those carrying this risky gene variant.

Note also that this gene variant is not only associated with Alzheimer’s risk, but also Down’s syndrome dementia, poor outcome following TBI, and age-related cognitive decline.

On which note, I’d like to point out recent findings from the long-running Nurses' Health Study, involving 16,514 older women (70-81), that suggest that effects of postmenopausal hormone therapy for cognition may depend on apolipoprotein E (APOE) status, with the fastest rate of decline being observed among HT users who carried the APOe4 variant (in general HT was associated with poorer cognitive performance).

It’s also interesting to note another recent finding: that intracranial volume modifies the effect of apoE4 and white matter lesions on dementia risk. The study, involving 104 demented and 135 nondemented 85-year-olds, found that smaller intracranial volume increased the risk of dementia, Alzheimer's disease, and vascular dementia in participants with white matter lesions. However, white matter lesions were not associated with increased dementia risk in those with the largest intracranial volume. But intracranial volume did not modify dementia risk in those with the apoE4 gene.

More genes involved in Alzheimer’s

More genome-wide association studies of Alzheimer's disease have now identified variants in BIN1, CLU, CR1 and PICALM genes that increase Alzheimer’s risk, although it is not yet known how these gene variants affect risk (the present study ruled out effects on the two biomarkers, amyloid-beta 42 and phosphorylated tau).

Same genes linked to early- and late-onset Alzheimer's

Traditionally, we’ve made a distinction between early-onset Alzheimer's disease, which is thought to be inherited, and the more common late-onset Alzheimer’s. New findings, however, suggest we should re-think that distinction. While the genetic case for early-onset might seem to be stronger, sporadic (non-familial) cases do occur, and familial cases occur with late-onset.

New DNA sequencing techniques applied to the APP (amyloid precursor protein) gene, and the PSEN1 and PSEN2 (presenilin) genes (the three genes linked to early-onset Alzheimer's) has found that rare variants in these genes are more common in families where four or more members were affected with late-onset Alzheimer’s, compared to normal individuals. Additionally, mutations in the MAPT (microtubule associated protein tau) gene and GRN (progranulin) gene (both linked to frontotemporal dementia) were also found in some Alzheimer's patients, suggesting they had been incorrectly diagnosed as having Alzheimer's disease when they instead had frontotemporal dementia.

Of the 439 patients in which at least four individuals per family had been diagnosed with Alzheimer's disease, rare variants in the 3 Alzheimer's-related genes were found in 60 (13.7%) of them. While not all of these variants are known to be pathogenic, the frequency of mutations in these genes is significantly higher than it is in the general population.

The researchers estimate that about 5% of those with late-onset Alzheimer's disease have changes in these genes. They suggest that, at least in some cases, the same causes may underlie both early- and late-onset disease. The difference being that those that develop it later have more protective factors.

Another gene identified in early-onset Alzheimer's

A study of the genes from 130 families suffering from early-onset Alzheimer's disease has found that 116 had mutations on genes already known to be involved (APP, PSEN1, PSEN2 — see below for some older reports on these genes), while five of the other 14 families all showed mutations on a new gene: SORL1.

I say ‘new gene’ because it hasn’t been implicated in early-onset Alzheimer’s before. However, it has been implicated in the more common late-onset Alzheimer’s, and last year a study reported that the gene was associated with differences in hippocampal volume in young, healthy adults.

The finding, then, provides more support for the idea that some cases of early-onset and late-onset Alzheimer’s have the same causes.

The SORL1 gene codes for a protein involved in the production of the beta-amyloid peptide, and the mutations seen in this study appear to cause an under-expression of SORL1, resulting in an increase in the production of the beta-amyloid peptide. Such mutations were not found in the 1500 ethnicity-matched controls.

 

Older news reports on these other early-onset genes (brought over from the old website):

New genetic cause of Alzheimer's disease

Amyloid protein originates when it is cut by enzymes from a larger precursor protein. In very rare cases, mutations appear in the amyloid precursor protein (APP), causing it to change shape and be cut differently. The amyloid protein that is formed now has different characteristics, causing it to begin to stick together and precipitate as amyloid plaques. A genetic study of Alzheimer's patients younger than 70 has found genetic variations in the promoter that increases the gene expression and thus the formation of the amyloid precursor protein. The higher the expression (up to 150% as in Down syndrome), the younger the patient (starting between 50 and 60 years of age). Thus, the amount of amyloid precursor protein is a genetic risk factor for Alzheimer's disease.

Theuns, J. et al. 2006. Promoter Mutations That Increase Amyloid Precursor-Protein Expression Are Associated with Alzheimer Disease. American Journal of Human Genetics, 78, 936-946.

http://www.eurekalert.org/pub_releases/2006-04/vfii-rda041906.php

Evidence that Alzheimer's protein switches on genes

Amyloid b-protein precursor (APP) is snipped apart by enzymes to produce three protein fragments. Two fragments remain outside the cell and one stays inside. When APP is produced in excessive quantities, one of the cleaved segments that remains outside the cell, called the amyloid b-peptides, clumps together to form amyloid plaques that kill brain cells and may lead to the development of Alzheimer’s disease. New research indicates that the short "tail" segment of APP that is trapped inside the cell might also contribute to Alzheimer’s disease, through a process called transcriptional activation - switching on genes within the cell. Researchers speculate that creation of amyloid plaque is a byproduct of a misregulation in normal APP processing.

[2866] Cao X, Südhof TC. A Transcriptively Active Complex of APP with Fe65 and Histone Acetyltransferase Tip60. Science [Internet]. 2001 ;293(5527):115 - 120. Available from: http://www.sciencemag.org/content/293/5527/115

http://www.eurekalert.org/pub_releases/2001-07/aaft-eta070201.php

Inactivation of Alzheimer's genes in mice causes dementia and brain degeneration

Mutations in two related genes known as presenilins are the major cause of early onset, inherited forms of Alzheimer's disease, but how these mutations cause the disease has not been clear. Since presenilins are involved in the production of amyloid peptides (the major components of amyloid plaques), it was thought that such mutations might cause Alzheimer’s by increasing brain levels of amyloid peptides. Accordingly, much effort has gone into identifying compounds that could block presenilin function. Now, however, genetic engineering in mice has revealed that deletion of these genes causes memory loss and gradual death of nerve cells in the mouse brain, demonstrating that the protein products of these genes are essential for normal learning, memory and nerve cell survival.

Saura, C.A., Choi, S-Y., Beglopoulos, V., Malkani, S., Zhang, D., Shankaranarayana Rao, B.S., Chattarji, S., Kelleher, R.J.III, Kandel, E.R., Duff, K., Kirkwood, A. & Shen, J. 2004. Loss of Presenilin Function Causes Impairments of Memory and Synaptic Plasticity Followed by Age-Dependent Neurodegeneration. Neuron, 42 (1), 23-36.

http://www.eurekalert.org/pub_releases/2004-04/cp-ioa032904.php

Reference: 

[2858] Consortium ENIGM-A (ENIGMA), Cohorts Heart Aging Research Genomic Epidemiology (charge). Common variants at 12q14 and 12q24 are associated with hippocampal volume. Nature Genetics [Internet]. 2012 ;44(5):545 - 551. Available from: http://www.nature.com/ng/journal/v44/n5/full/ng.2237.html

[2909] Taal RH, Pourcain BS, Thiering E, Das S, Mook-Kanamori DO, Warrington NM, Kaakinen M, Kreiner-Møller E, Bradfield JP, Freathy RM, et al. Common variants at 12q15 and 12q24 are associated with infant head circumference. Nature Genetics [Internet]. 2012 ;44(5):532 - 538. Available from: http://www.nature.com/ng/journal/v44/n5/abs/ng.2238.html

[2859] Cohorts Heart Aging Research Genomic Epidemiology (charge), Consortium EGG (EGG). Common variants at 6q22 and 17q21 are associated with intracranial volume. Nature Genetics [Internet]. 2012 ;44(5):539 - 544. Available from: http://www.nature.com/ng/journal/v44/n5/full/ng.2245.html

[2907] Stein JL, Medland SE, Vasquez AA, Hibar DP, Senstad RE, Winkler AM, Toro R, Appel K, Bartecek R, Bergmann Ø, et al. Identification of common variants associated with human hippocampal and intracranial volumes. Nature Genetics [Internet]. 2012 ;44(5):552 - 561. Available from: http://www.nature.com/ng/journal/v44/n5/abs/ng.2250.html

[2925] Bell RD, Winkler EA, Singh I, Sagare AP, Deane R, Wu Z, Holtzman DM, Betsholtz C, Armulik A, Sallstrom J, et al. Apolipoprotein E controls cerebrovascular integrity via cyclophilin A. Nature [Internet]. 2012 . Available from: http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11087.html?WT.ec_id=NATURE-20120517

Kang, J. H., & Grodstein F. (2012).  Postmenopausal hormone therapy, timing of initiation, APOE and cognitive decline. Neurobiology of Aging. 33(7), 1129 - 1137.

Skoog, I., Olesen P. J., Blennow K., Palmertz B., Johnson S. C., & Bigler E. D. (2012).  Head size may modify the impact of white matter lesions on dementia. Neurobiology of Aging. 33(7), 1186 - 1193.

[2728] Cruchaga C, Chakraverty S, Mayo K, Vallania FLM, Mitra RD, Faber K, Williamson J, Bird T, Diaz-Arrastia R, Foroud TM, et al. Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families. PLoS ONE [Internet]. 2012 ;7(2):e31039 - e31039. Available from: UR - http://dx.doi.org/10.1371/journal.pone.0031039,http://dx.doi.org/10.1371/journal.pone.0031039

Full text available at http://www.plosone.org/article/info%3Adoi%2F10.1371%2Fjournal.pone.0031039

[2897] Pottier C, Hannequin D, Coutant S, Rovelet-Lecrux A, Wallon D, Rousseau S, Legallic S, Paquet C, Bombois S, Pariente J, et al. High frequency of potentially pathogenic SORL1 mutations in autosomal dominant early-onset Alzheimer disease. Molecular Psychiatry [Internet]. 2012 . Available from: http://www.nature.com/mp/journal/vaop/ncurrent/full/mp201215a.html

McCarthy, J. J., Saith S., Linnertz C., Burke J. R., Hulette C. M., Welsh-Bohmer K. A., et al. (2012).  The Alzheimer's associated 5′ region of the SORL1 gene cis regulates SORL1 transcripts expression. Neurobiology of Aging. 33(7), 1485.e1-1485.e8 - 1485.e1-1485.e8

Source: 

tags development: 

Topics: 

tags memworks: 

tags problems: 

tags: 

Career choice may determine where frontotemporal dementia begins

October, 2010

An international review of patients with frontotemporal dementia has revealed that the area of the brain first affected tends to be the hemisphere least used in the individual’s occupation.

A review of brain imaging and occupation data from 588 patients diagnosed with frontotemporal dementia has found that among the dementias affecting those 65 years and younger, FTD is as common as Alzheimer's disease. The study also found that the side of the brain first attacked (unlike Alzheimer’s, FTD typically begins with tissue loss in one hemisphere) is influenced by the person’s occupation.

Using occupation scores that reflect the type of skills emphasized, they found that patients with professions rated highly for verbal skills, such as school principals, had greater tissue loss on the right side of the brain, whereas those rated low for verbal skills, such as flight engineers, had greater tissue loss on the left side of the brain. This effect was expressed most clearly in the temporal lobes of the brain. In other words, the side of the brain least used in the patient's professional life was apparently the first attacked.

These findings are in keeping with the theory of cognitive reserve, but may be due to some asymmetry in the brain that both inclines them to a particular occupational path and renders the relatively deficient hemisphere more vulnerable in later life.

Reference: 

Source: 

Topics: 

tags problems: 

tags strategies: 

tags: 

tags development: 

tags memworks: 

Subscribe to RSS - frontotemporal dementia