emotion

Emotion

Older news items (pre-2010) brought over from the old website

How emotion affects memory (general)

Mixed feelings not remembered as well as happy or sad ones

A series of studies that tested participants' emotions when they faced scenarios such as taking tests and moving, events that are typically associated with mixed emotions, has found that the intensity of mixed emotions tends to be underestimated when recalling the experience. This underestimation increases over time, to the point that people sometimes don't remember having felt ambivalent at all. This is more likely among those who are uncomfortable feeling mixed emotions. Interestingly, Asian Americans in the study did not exhibit the same degree of memory decline for mixed emotions as Anglo-Americans did.

Aaker, J., Drolet, A. & Griffin, D. 2008. Recalling Mixed Emotions. Journal of Consumer Research, 35 (2), 268-278.

http://www.eurekalert.org/pub_releases/2008-06/uocp-mfn062508.php

Emotions help memory, at the cost of other memories

Do we remember emotionally charged events better? Maybe — but at a price. A new study presented volunteers with lists of neutral words with one disturbing noun, such as murder or scream, embedded. As expected, the emotional words were much better remembered than the neutral words. More interestingly, the poorest memory occurred for neutral words that were presented immediately before the disturbing words. The effect was greater for women — women forgot those words twice as often as men.

[214] Strange, B. A., Hurlemann R., & Dolan R. J.
(2003).  An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent.
Proceedings of the National Academy of Sciences of the United States of America. 100(23), 13626 - 13631.

http://www.sciencenews.org/20031108/fob5.asp

How memory helps make life pleasant

Surveys consistently show that people are generally happy with their lives. A review of research into autobiographical memory suggests why - human memory is biased toward happiness. Across 12 studies conducted by five different research teams, people of different racial and ethnic backgrounds and of different ages consistently reported experiencing more positive events in their lives than negative events, suggesting that pleasant events do in fact outnumber unpleasant events because people seek out positive experiences and avoid negative ones. Our memory also treats pleasant emotions differently from unpleasant emotions. Pleasant emotions appear to fade more slowly from our memory than unpleasant emotions. This is not repression; people do remember negative events, they just remember them less negatively. Among those with mild depression, however, unpleasant and pleasant emotions tend to fade evenly.

Walker, W.R., Skowronski, J.J. & Thompson, C.P. 2003. Life Is Pleasant -- and Memory Helps to Keep It That Way! Review of General Psychology, 7(2),203-10.

http://www.eurekalert.org/pub_releases/2003-06/apa-rtg060203.php

Suppressing your expression of emotion affects your memory for the event

The way people go about controlling their reactions to emotional events affects their memory of the event. In a series of experiments designed to assess the effect of suppressing the expression of emotion, it was found that, when people were shown a video of an emotional event and instructed not to let their emotions show, they had poorer memory for what was said and done than did those people who were given no such instructions. However, when shown slides of people who had been injured, people in both groups were equally good at picking which in an array of subtly different versions of each slide had been shown earlier - but when prompted to recall information that had been presented verbally with each slide, those in the suppression group again remembered fewer details. People who were asked to adopt the neutral attitude of a medical profession however, performed better than the control group on nonverbal recall, indicating the regulation of emotions via reappraisal was not associated with any memory impairment. These experimental results were supported by a naturalistic study.

[607] Richards, J. M., & Gross J. J.
(2000).  Emotion regulation and memory: The cognitive costs of keeping one's cool..
Journal of Personality and Social Psychology. 79(3), 410 - 424.

http://www.sciencedaily.com/releases/2000/09/000913203335.htm

Mood

When mood affects memory

The effect of mood on memory depends on what questions are asked; only some aspects of memory are affected by incidental mood. For example, your memory of a restaurant's food won't be affected by the mood you were in when you ate it, but your memory of how much you enjoyed it will be. A new study shows that the effects of mood also depend on whether you had thought about that aspect during the experience — whether you had thought about how enjoyable the experience was at the time. In the study, people were shown a painting. Half of them were first put in a negative mood by reading and answering questions about an unpleasant subject. After looking at the painting, half were asked what they thought of it. Five days later, the participants were all asked how much they had liked the painting. While being in a negative mood had affected those who had evaluated the painting at the time, it did not affect those who had not made an evaluation at the time of presentation.

Pocheptsova, A. & Novemsky, N. 2009. When Do Incidental Mood Effects Last? Lay Beliefs versus Actual Effects. Journal of Consumer Research, Published online September 10, 2009

http://www.physorg.com/news172767544.html
http://www.eurekalert.org/pub_releases/2009-09/uocp-mmn092109.php

Perception affected by mood

An imaging study has revealed that when people were shown a composite image with a face surrounded by "place" images, such as a house, and asked to identify the gender of the face, those in whom a bad mood had been induced didn’t process the places in the background. However, those in a good mood took in both the focal and background images. These differences in perception were coupled with differences in activity in the parahippocampal place area. Increasing the amount of information is of course not necessarily a good thing, as it may result in more distraction.

[1054] Schmitz, T. W., De Rosa E., & Anderson A. K.
(2009).  Opposing Influences of Affective State Valence on Visual Cortical Encoding.
J. Neurosci.. 29(22), 7199 - 7207.

http://www.eurekalert.org/pub_releases/2009-06/uot-pww060309.php

Positive mood may not help in tasks requiring attention to detail

A series of experiments with different child age groups who had happy or sad moods induced with the aid of music and selected video clips before then being asked to undertake a task that required attention to detail has found that the children induced to feel a sad or neutral mood performed the task better than those induced to feel happy. Other research has found that a positive mood is beneficial in other situations, such as when a task calls for creative thinking.

[854] Schnall, S. [1], Jaswal V. K. [2], & Rowe C. [1]
(2008).  A hidden cost of happiness in children.
Developmental Science. 11, F25-F30 - F25-F30.

http://www.eurekalert.org/pub_releases/2008-06/uov-ssc053008.php

Omega-3 boosts grey matter

A study of 55 healthy adults has found that those who had high levels of long-chain omega-3 fatty acids had more gray matter in areas of the brain associated with emotional arousal and regulation — the bilateral anterior cingulate cortex, the right amygdala and the right hippocampus. Although this doesn’t mean omega-3 necessarily causes such changes, the finding does support a recent study that found higher levels of omega-3 were associated with a more positive outlook, and animal studies showing that increasing omega-3 intake leads to structural changes in the brain. Good sources of omega-3 fatty acids are walnuts, flax, and fatty fish such as salmon and sardines.

The findings were presented March 7 at the American Psychosomatic Society's Annual Meeting, in Budapest, Hungary.

http://www.sciencedaily.com/releases/2007/03/070307080827.htm
http://www.webmd.com/diet/news/20070307/omega-3-fatty-acids-may-boost-brain

Insight into the processes of 'positive' and 'negative' learners

An intriguing study of the electrical signals emanating from the brain has revealed two types of learners. A brainwave event called an "event-related potential" (ERP) is important in learning; a particular type of ERP called "error-related negativity" (ERN), is associated with activity in the anterior cingulate cortex. This region is activated during demanding cognitive tasks, and ERNs are typically more negative after participants make incorrect responses compared to correct choices. Unexpectedly, studies of this ERN found a difference between "positive" learners, who perform better at choosing the correct response than avoiding the wrong one, and "negative" learners, who learn better to avoid incorrect responses. The negative learners showed larger ERNs, suggesting that "these individuals are more affected by, and therefore learn more from, their errors.” Positive learners had larger ERNs when faced with high-conflict win/win decisions among two good options than during lose/lose decisions among two bad options, whereas negative learners showed the opposite pattern.

[818] Frank, M. J., Woroch B. S., & Curran T.
(2005).  Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases.
Neuron. 47(4), 495 - 501.

http://www.eurekalert.org/pub_releases/2005-08/cp-iit081205.php

Positive emotions help people see big picture details

A study involving 89 students, who watched a video designed to induce either joy and laughter, anxiety, or no emotion, found that those who were in a positive mood had a far greater ability to recognize members of another race when briefly shown photos of individuals. In the absence of positive emotions, subjects recognized members of their own race 75% of the time but only recognized members of another race 65% of the time. Their ability to recognize members of their own race was unaffected by their emotional state.

[2551] Johnson, K. J., & Fredrickson B. L.
(2005).  “We All Look the Same to Me”.
Psychological Science. 16(11), 875 - 881.

http://www.eurekalert.org/pub_releases/2005-02/uom-pes020105.php

Mood affects eyewitness accuracy and reasoning

A new study suggests people in a negative mood provide more accurate eyewitness accounts than people in a positive mood state. Moreover, people in a positive mood showed poorer judgment and critical thinking skills than those in a negative mood. The researchers suggest that a negative mood state triggers more systematic and attentive, information processing, while good moods signal a benign, non-threatening environment where we don't need to be so vigilant.

[2550] Forgas, J. P., Laham S. M., & Vargas P. T.
(2005).  Mood effects on eyewitness memory: Affective influences on susceptibility to misinformation.
Journal of Experimental Social Psychology. 41(6), 574 - 588.

http://www.eurekalert.org/pub_releases/2004-08/uons-era082004.php

Excitement helps memory for unrelated events

We’ve long known that emotionally charged events are easier to remember than boring ones. New research suggests that the reason is the flood of emotion, not the personal meaningfulness of the event. Subjects asked to memorize a list of words did better if they subsequently watched a gory film of a bloody dental extraction, rather than a dull video on tooth brushing.

Nielson, K.A., Yee, D. & Erickson, K.I. 2002. Modulation of memory storage processes by post-training emotional arousal from a semantically unrelated source. Paper presented at the Society for Neuroscience annual meeting in Orlando, Florida, 4 November.

http://www.nature.com/nsu/021104/021104-5.html

Mood needs to be matched to cognitive task for best performance

An imaging study looked at the brain activity of 14 college-aged men and women as they performed difficult cognitive tasks requiring the active retention of information in working memory, after watching short, emotional videos, designed to elicit one of three emotional states: pleasant, neutral or anxious. It was found that mild anxiety improved performance on some tasks, but hurt performance on others. Being in a pleasant mood boosted some kinds of performance but impaired other kinds. A region of the prefrontal cortex was jointly influenced by a combination of mood state and cognitive task, but not by either one alone.

[227] Gray, J. R., Braver T. S., & Raichle M. E.
(2002).  Integration of emotion and cognition in the lateral prefrontal cortex.
Proceedings of the National Academy of Sciences of the United States of America. 99(6), 4115 - 4120.

http://www.eurekalert.org/pub_releases/2002-03/wuis-mlt031802.php

Brain study shows how surprises help us learn

Because they are hard to forget, surprises can help us learn. Now scientists have identified a part of the brain that may be involved in learning from surprises. A team led by Dr. Paul C. Fletcher at the University of Cambridge monitored the brain activity in a group of volunteers who were participating in a simulation exercise. The participants pretended to work at drug companies and were asked to predict whether a particular fictitious drug would trigger a particular fictitious syndrome. In the early phase of the study, when the participants were not familiar with the effects of the various drugs, imaging tests detected high levels of activity in this part of the brain. As the volunteers became familiar with the effects of the drugs, so that they were no longer surprised by the results, activity in the dorsolateral prefrontal cortex declined, but later in the study, this region became more active when the participants were surprised by unexpected responses.

[1329] Fletcher, P. C., Anderson J. M., Shanks D. R., Honey R., Carpenter T. A., Donovan T., et al.
(2001).  Responses of human frontal cortex to surprising events are predicted by formal associative learning theory.
Nat Neurosci. 4(10), 1043 - 1048.

Motivation & attitude

Confidence as important as IQ in exam success

I’ve talked repeatedly about the effects of self-belief on memory and cognition. One important area in which this is true is that of academic achievement. Evidence indicates that your perceived abilities matter, just as much? more than? your actual abilities. It has been assumed that self perceived abilities, self-confidence if you will, is a product mainly of nurture. Now a new twin study provides evidence that nurture / environment may only provide half the story; the other half may lie in the genes. The study involved 1966 pairs of identical twins and 1877 pairs of fraternal twins. The next step is to tease out which of these genes are related to IQ and which to personality variables.

[1080] Greven, C. U., Harlaar N., Kovas Y., Chamorro-Premuzic T., & Plomin R.
(2009).  More Than Just IQ: School Achievement Is Predicted by Self-Perceived Abilities—But for Genetic Rather Than Environmental Reasons.
Psychological Science. 20(6), 753 - 762.

http://www.newscientist.com/article/dn17187-confidence-as-important-as-iq-in-exam-success.html

Anticipation strengthens memory

An imaging study has revealed that the amygdala and the hippocampus become activated when a person is anticipating a difficult situation (some type of gruesome picture). Moreover, the higher the level of activation during this anticipation, the better the pictures were remembered two weeks later. The study demonstrates how expectancy can affect long-term memory formation, and suggests that the greater our anxiety about a situation, the better we’ll remember that situation. If it’s an unpleasant one, this will only reinforce the anxiety, setting up a vicious cycle. The study has important implications for the treatment of psychological conditions such as post-traumatic stress disorder and social anxiety.

[354] Mackiewicz, K. L., Sarinopoulos I., Cleven K. L., & Nitschke J. B.
(2006).  The effect of anticipation and the specificity of sex differences for amygdala and hippocampus function in emotional memory.
Proceedings of the National Academy of Sciences. 103(38), 14200 - 14205.

http://www.eurekalert.org/pub_releases/2006-09/uow-apa090106.php

Why motivation helps memory

An imaging study has identified the brain region involved in anticipating rewards — specific brain structures in the mesolimbic region involved in the processing of emotions — and revealed how this reward center promotes memory formation. Cues to high-reward scenes that were later remembered activated the reward areas of the mesolimbic region as well as the hippocampus. Anticipatory activation also suggests that the brain actually prepares in advance to filter incoming information rather than simply reacting to the world.

[1254] Adcock, A. R., Thangavel A., Whitfield-Gabrieli S., Knutson B., & Gabrieli J. D. E.
(2006).  Reward-Motivated Learning: Mesolimbic Activation Precedes Memory Formation.
Neuron. 50(3), 507 - 517.

http://www.eurekalert.org/pub_releases/2006-05/cp-tbm042706.php

Different brain regions for arousing and non-arousing words

An imaging study has found that words representing arousing events (e.g., “rape”, “slaughter”) activate cells in the amygdala, while nonarousing words (e.g., “sorrow”, “mourning”) activated cells in the prefrontal cortex. The hippocampus was active for both type of words. On average, people remembered more of the arousing words than the others, suggesting stress hormones, released as part of the response to emotionally arousing events, are responsible for enhancing memories of those events.

Kensinger, E.A. & Corkin, S. 2004. Two routes to emotional memory: Distinct neural processes for valence and arousal. PNAS, 101, 3310-3315. Published online before print February 23 2004, 10.1073/pnas.0306408101

http://www.eurekalert.org/pub_releases/2004-03/miot-mlu030104.php

 

Gender & age effects

When emotions involved, older adults may perform memory tasks better than young adults

A study involving 72 young adults (20-30 years old) and 72 older adults (60-75) has found that regulating emotions – such as reducing negative emotions or inhibiting unwanted thoughts – is a resource-demanding process that disrupts the ability of young adults to simultaneously or subsequently perform tasks, but doesn’t affect older adults. In the study, most of the participants watched a two-minute video designed to induce disgust, while the rest watched a neutral two-minute clip. Participants then played a computer memory game. Before playing 2 further memory games, those who had watched the disgusting video were instructed either to change their negative reaction into positive feelings as quickly as possible or to maintain the intensity of their negative reaction, or given no instructions. Those young adults who had been told to turn their disgust into positive feelings, performed significantly worse on the subsequent memory tasks, but older adults were not affected. The feelings of disgust in themselves did not affect performance in either group. It’s speculated that older adults’ greater experience allows them to regulate their emotions without cognitive effort.

[200] Scheibe, S., & Blanchard-Fields F.
(2009).  Effects of regulating emotions on cognitive performance: what is costly for young adults is not so costly for older adults.
Psychology and Aging. 24(1), 217 - 223.

http://www.eurekalert.org/pub_releases/2009-03/giot-oac030409.php

Aging brains allow negative memories to fade

Another study has found that older adults (average age 70) remember fewer negative images than younger adults (average age 24), and that this has to do with differences in brain activity. When shown negative images, the older participants had reduced interactions between the amygdala and the hippocampus, and increased interactions between the amygdala and the dorsolateral frontal cortex. It seems that the older participants were using thinking rather than feeling processes to store these emotional memories, sacrificing information for emotional stability. The findings are consistent with earlier research showing that healthy seniors are able to regulate emotion better than younger people.

[680] St Jacques, P. L., Dolcos F., & Cabeza R.
(2009).  Effects of aging on functional connectivity of the amygdala for subsequent memory of negative pictures: a network analysis of functional magnetic resonance imaging data.
Psychological Science: A Journal of the American Psychological Society / APS. 20(1), 74 - 84.

http://www.eurekalert.org/pub_releases/2008-12/uoaf-aba121608.php
http://www.eurekalert.org/pub_releases/2008-12/dumc-oay121508.php

Emotions help memory, at the cost of other memories

Do we remember emotionally charged events better? Maybe — but at a price. A new study presented volunteers with lists of neutral words with one disturbing noun, such as murder or scream, embedded. As expected, the emotional words were much better remembered than the neutral words. More interestingly, the poorest memory occurred for neutral words that were presented immediately before the disturbing words. The effect was greater for women — women forgot those words twice as often as men.

[214] Strange, B. A., Hurlemann R., & Dolan R. J.
(2003).  An emotion-induced retrograde amnesia in humans is amygdala- and beta-adrenergic-dependent.
Proceedings of the National Academy of Sciences of the United States of America. 100(23), 13626 - 13631.

http://www.sciencenews.org/20031108/fob5.asp

Why women better remember emotional memories

A new brain imaging study reveals gender differences in the encoding of emotional memories. We have long known that women are better at remembering emotional memories, now we can see that the sexes tend to encode emotional experiences in different parts of the brain. In women, it seems that evaluation of emotional experience and encoding of the memory is much more tightly integrated.

[807] Canli, T., Desmond J. E., Zhao Z., & Gabrieli J. D. E.
(2002).  Sex differences in the neural basis of emotional memories.
Proceedings of the National Academy of Sciences of the United States of America. 99(16), 10789 - 10794.

http://www.newscientist.com/news/news.jsp?id=ns99992576

Older adults better at forgetting negative images

It seems that this general tendency, to remember the good, and let the bad fade, gets stronger as we age. Following recent research suggesting that older people tend to regulate their emotions more effectively than younger people, by maintaining positive feelings and lowering negative feelings, researchers examined age differences in recall of positive, negative and neutral images of people, animals, nature scenes and inanimate objects. The first study tested 144 participants aged 18-29, 41-53 and 65-80. Older adults recalled fewer negative images relative to positive and neutral images. For the older adults, recognition memory also decreased for negative pictures. As a result, the younger adults remembered the negative pictures better. Preliminary brain research suggests that in older adults, the amygdala is activated equally to positive and negative images, whereas in younger adults, it is activated more to negative images. This suggests that older adults encode less information about negative images, which in turn would diminish recall.

[343] Charles, S T., Mather M., & Carstensen L. L.
(2003).  Aging and Emotional Memory: The Forgettable Nature of Negative Images for Older Adults.
Journal of Experimental Psychology: General. 132(2), 310 - 324.

http://www.apa.org/releases/aging_memory.html

Gender & race stereotypes

Neurology

Nasal spray boosts consolidation of emotional memory

A study in which 17 healthy young men were given a nasal spray of either interleukin-6 or a placebo after reading a short story (emotional on one occasion; neutral on the other) before going to bed, has found that those given the immune system molecule showed improved memory for emotional text (but not other kinds of material). Interleukin-6 is involved in inflammatory responses, but recently has also been implicated in memory consolidation during sleep. This finding supports that role, and demonstrates an interaction between the immune system and the central nervous system.

[811] Benedict, C., Scheller J., Rose-John S., Born J., & Marshall L.
(2009).  Enhancing influence of intranasal interleukin-6 on slow-wave activity and memory consolidation during sleep.
FASEB J.. 23(10), 3629 - 3636.

http://www.sciencedaily.com/releases/2009/10/091001091752.htm

Sleep selectively preserves emotional memories

It’s now generally accepted that sleep plays an important role in consolidating procedural (skill) memories, but the position regarding other types of memory has been less clear.  A new study has found that sleep had an effect on emotional aspects of a memory. The study involved showing 88 students neutral scenes (such as a car parked on a street in front of shops) or negative scenes (a badly crashed car parked on a similar street). They were then tested for their memories of both the central objects in the pictures and the backgrounds in the scenes, either after 12 daytime hours, or 12 night-time hours, or 30 minutes after viewing the images, in either the morning or evening.  Those tested after 12 daytime hours largely forgot the entire negative scene, forgetting both the central objects and the backgrounds equally. But those tested after a night’s sleep remembered the emotional item (e.g., the smashed car) as well as those who were tested only 30 minutes later. Their memory of the neutral background was however, as bad as the daytime group. The findings are consistent with the view that the individual components of emotional memory become 'unbound' during sleep, enabling the brain to selectively preserve only that information it considers important.

[875] Payne, J. D., Stickgold R., Swanberg K., & Kensinger E. A.
(2008).  Sleep preferentially enhances memory for emotional components of scenes.
Psychological Science: A Journal of the American Psychological Society / APS. 19(8), 781 - 788.

http://www.physorg.com/news137908693.html
http://www.eurekalert.org/pub_releases/2008-08/bidm-sft081308.php

Why emotion enhances memory

We know that emotion can increase the memorability of events, but we haven’t known exactly why it does so. Now a new study reveals that during emotional arousal, the stress hormone norepinephrine makes synapses dramatically more sensitive by increasing the number of GluR1 receptors.

[423] Hu, H., Real E., Takamiya K., Kang M-G., Ledoux J., Huganir R. L., et al.
(2007).  Emotion Enhances Learning via Norepinephrine Regulation of AMPA-Receptor Trafficking.
Cell. 131(1), 160 - 173.

http://www.eurekalert.org/pub_releases/2007-10/jhmi-wem100407.php
http://www.eurekalert.org/pub_releases/2007-10/cp-hec100107.php
http://www.brainatlas.org/aba/2007/071018/full/aba1787.shtml

How emotions interfere with memory

We know emotion can interfere with cognitive processes. Now an imaging study adds to our understanding of how that occurs. Emotional images evoked strong activity in typical emotional processing regions (amygdala and ventrolateral prefrontal cortex) while simultaneously deactivating regions involved in memory processing (dorsolateral prefrontal cortex and lateral parietal cortex). The researchers also found individual differences among the subjects in their response to the images. People who showed greater activity in a brain region associated with the inhibition of response to emotional stimuli rated the emotional distracters as less distracting.

[270] Dolcos, F., & McCarthy G.
(2006).  Brain Systems Mediating Cognitive Interference by Emotional Distraction.
J. Neurosci.. 26(7), 2072 - 2079.

http://www.eurekalert.org/pub_releases/2006-02/dumc-he021506.php

Different aspects of attention located in different parts of the brain

We all know attention is important, but we’ve never been sure exactly what it is. Recent research suggests there’s good reason for this – attention appears to be multi-faceted, far less simple than originally conceived. Patients with specific lesions in the frontal lobes and other parts of the brain have provided evidence that different types of attentional problems are associated with injuries in different parts of the brain, suggesting that attention is not, as has been thought, a global process. The researchers have found evidence for at least three distinct processes, each located in different parts of the frontal lobes. These are: (1) a system that helps us maintain a general state of readiness to respond, in the superior medial frontal regions; (2) a system that sets our threshold for responding to an external stimulus, in the left dorsolateral region; and (3) a system that helps us selectively attend to appropriate stimuli, in the right dorsolateral region.

[260] Stuss, D. T., Binns M. A., Murphy K. J., & Alexander M. P.
(2002).  Dissociations within the anterior attentional system: effects of task complexity and irrelevant information on reaction time speed and accuracy.
Neuropsychology. 16(4), 500 - 513.

http://www.eurekalert.org/pub_releases/2002-10/apa-pda100702.php

How emotions interfere with staying focused

In a new imaging study, Duke University researchers have shown how emotional stimuli and "attentional functions" like driving move in parallel streams through the brain before being integrated in a specific part of the brain's prefrontal cortex (the anterior cingulate, which is located between the right and left halves). Emotional stimuli are thus more likely than simple distractions to interfere with a person's efforts to focus on a task such as driving. These findings may help us understand the neural dynamics underlying emotional distractibility on attentional tasks in affective disorders.

[835] Yamasaki, H., LaBar K. S., & McCarthy G.
(2002).  Dissociable prefrontal brain systems for attention and emotion.
Proceedings of the National Academy of Sciences of the United States of America. 99(17), 11447 - 11451.

www.pnas.org/cgi/doi/10.1073/pnas.182176499
http://www.pnas.org/cgi/content/abstract/99/17/11447

Cerebellum implicated in remembering emotions

The part of the brain known as the cerebellum has been most closely associated with motor coordination skills. Experiments with rats suggest that it may also be involved in remembering strong emotions, in particular, in the consolidation of long-term memories of fear.

[763] Sacchetti, B., Baldi E., Lorenzini C A., & Bucherelli C.
(2002).  Cerebellar role in fear-conditioning consolidation.
Proceedings of the National Academy of Sciences of the United States of America. 99(12), 8406 - 8411.

http://www.pnas.org/cgi/content/abstract/112660399v1
http://news.bmn.com/jscan/biology?uid=18768

Amygdala may be critical for allowing perception of emotionally significant events despite inattention

We choose what to pay attention to, what to remember. We give more weight to some things than others. Our perceptions and memories of events are influenced by our preconceptions, and by our moods. Researchers at Yale and New York University have recently published research indicating that the part of the brain known as the amygdala is responsible for the influence of emotion on perception. This builds on previous research showing that the amygdala is critically involved in computing the emotional significance of events. The amygdala is connected to those brain regions dealing with sensory experiences, and the theory that these connections allow the amygdala to influence early perceptual processing is supported by this research. Dr. Anderson suggests that “the amygdala appears to be critical for the emotional tuning of perceptual experience, allowing perception of emotionally significant events to occur despite inattention.”

[968] Anderson, A. K., & Phelps E. A.
(2001).  Lesions of the human amygdala impair enhanced perception of emotionally salient events.
Nature. 411(6835), 305 - 309.

http://www.eurekalert.org/pub_releases/2001-05/NYU-Infr-1605101.php

tags memworks: 

Negative emotion can enhance memory for tested information

September, 2011

Images designed to arouse strong negative emotion can improve your memory for information you’re learning, if presented immediately after you’ve been tested on it.

In a recent study, 40 undergraduate students learned ten lists of ten pairs of Swahili-English words, with tests after each set of ten. On these tests, each correct answer was followed by an image, either a neutral one or one designed to arouse negative emotions, or by a blank screen. They then did a one-minute multiplication test before moving on to the next section.

On the final test of all 100 Swahili-English pairs, participants did best on items that had been followed by the negative pictures.

In a follow-up experiment, students were shown the images two seconds after successful retrieval. The results were the same.

In the final experiment, the section tests were replaced by a restudying period, where each presentation of a pair was followed by an image or blank screen. The effect did not occur, demonstrating that the effect depends on retrieval.

The study focused on negative emotion because earlier research has found no such memory benefit for positive images (including images designed to be sexually arousing).

The findings emphasize the importance of the immediate period after retrieval, suggesting that this is a fruitful time for manipulations that enhance or impair memory. This is consistent with the idea of reconsolidation — that when information is retrieved from memory, it is in a labile state, able to be changed. Thus, by presenting a negative image when the retrieved memory is still in that state, the memory absorbs some of that new context.

Reference: 

[2340] Finn, B., & Roediger H. L.
(2011).  Enhancing Retention Through Reconsolidation.
Psychological Science. 22(6), 781 - 786.

Source: 

Topics: 

tags memworks: 

tags study: 

Working memory capacity affects emotional regulation

June, 2011

A new study confirms earlier indications that those with a high working memory capacity are better able to regulate their emotions.

Once upon a time we made a clear difference between emotion and reason. Now increasing evidence points to the necessity of emotion for good reasoning. It’s clear the two are deeply entangled.

Now a new study has found that those with a higher working memory capacity (associated with greater intelligence) are more likely to automatically apply effective emotional regulation strategies when the need arises.

The study follows on from previous research that found that people with a higher working memory capacity suppressed expressions of both negative and positive emotion better than people with lower WMC, and were also better at evaluating emotional stimuli in an unemotional manner, thereby experiencing less emotion in response to those stimuli.

In the new study, participants were given a test, then given either negative or no feedback. A subsequent test, in which participants were asked to rate their familiarity with a list of people and places (some of which were fake), evaluated whether their emotional reaction to the feedback affected their performance.

This negative feedback was quite personal. For example: "your responses indicate that you have a tendency to be egotistical, placing your own needs ahead of the interests of others"; "if you fail to mature emotionally or change your lifestyle, you may have difficulty maintaining these friendships and are likely to form insecure relations."

The false items in the test were there to check for "over claiming" — a reaction well known to make people feel better about themselves and control their reactions to criticism. Among those who received negative feedback, those with higher levels of WMC were found to over claim the most. The people who over claimed the most also reported, at the end of the study, the least negative emotions.

In other words, those with a high WMC were more likely to automatically use an emotion regulation strategy. Other emotional reappraisal strategies include controlling your facial expression or changing negative situations into positive ones. Strategies such as these are often more helpful than suppressing emotion.

Reference: 

Schmeichel, Brandon J.; Demaree, Heath A. 2010. Working memory capacity and spontaneous emotion regulation: High capacity predicts self-enhancement in response to negative feedback. Emotion, 10(5), 739-744.

Schmeichel, Brandon J.; Volokhov, Rachael N.; Demaree, Heath A. 2008. Working memory capacity and the self-regulation of emotional expression and experience. Journal of Personality and Social Psychology, 95(6), 1526-1540. doi: 10.1037/a0013345

Source: 

Topics: 

tags memworks: 

tags problems: 

Sleep reorganizes your memories

December, 2010

New studies show how sleep sculpts your memories, emphasizing what’s important and connecting it to other memories in your brain.

The role of sleep in consolidating memory is now well-established, but recent research suggests that sleep also reorganizes memories, picking out the emotional details and reconfiguring the memories to help you produce new and creative ideas. In an experiment in which participants were shown scenes of negative or neutral objects at either 9am or 9pm and tested 12 hours later, those tested on the same day tended to forget the negative scenes entirely, while those who had a night’s sleep tended to remember the negative objects but not their neutral backgrounds.

Follow-up experiments showed the same selective consolidation of emotional elements to a lesser degree after a 90-minute daytime nap, and to a greater degree after a 24-hour or even several-month delay (as long as sleep directly followed encoding).

These findings suggest that processes that occur during sleep increase the likelihood that our emotional responses to experiences will become central to our memories of them. Moreover, additional nights of sleep may continue to modify the memory.

In a different approach, another recent study has found that when volunteers were taught new words in the evening, then tested immediately, before spending the night in the sleep lab and being retested in the morning, they could remember more words in the morning than they did immediately after learning them, and they could recognize them faster. In comparison, a control group who were trained in the morning and re-tested in the evening showed no such improvement on the second test.

Deep sleep (slow-wave sleep) rather than rapid eye movement (REM) sleep or light sleep appeared to be the important phase for strengthening the new memories. Moreover, those who experienced more sleep spindles overnight were more successful in connecting the new words to the rest of the words in their mental lexicon, suggesting that the new words were communicated from the hippocampus to the neocortex during sleep. Sleep spindles are brief but intense bursts of brain activity that reflect information transfer between the hippocampus and the neocortex.

The findings confirm the role of sleep in reorganizing new memories, and demonstrate the importance of spindle activity in the process.

Taken together, these studies point to sleep being more important to memory than has been thought. The past decade has seen a wealth of studies establishing the role of sleep in consolidating procedural (skill) memory, but these findings demonstrate a deeper, wider, and more ongoing process. The findings also emphasize the malleability of memory, and the extent to which they are constructed (not copied) and reconstructed.

Reference: 

Source: 

Topics: 

tags lifestyle: 

tags memworks: 

Building language skills more critical for boys than girls

October, 2010

A study of language and self-regulation skills in toddlers suggests that having a good vocabulary helps boys in particular control their behavior and emotions.

A study involving 120 toddlers, tested at 14, 24, and 36 months, has assessed language skills (spoken vocabulary and talkativeness) and the development of self-regulation. Self-regulation is an important skill that predicts later academic and social success. Previous research has found that language skills (and vocabulary in particular) help children regulate their emotions and behavior. Boys have also been shown to lag behind girls in both language and self-regulation.

The present study hoped to explain inconsistencies in previous research findings by accounting for general cognitive development and possible gender differences. It found that vocabulary was more important than talkativeness, and 24-month vocabulary predicted the development of self-regulation even when general cognitive development was accounted for. However, girls seemed ‘naturally’ better able to control themselves and focus, but the ability in boys was much more associated with language skills. Boys with a strong vocabulary showed a dramatic increase in self-regulation, becoming comparable to girls with a strong vocabulary.

These gender differences suggest that language skills may be more important for boys, and that more emphasis should be placed on encouraging young boys to use words to solve problems, rather than accepting that ‘boys will be boys’.

Reference: 

[1871] Vallotton, C., & Ayoub C.
(Submitted).  Use your words: The role of language in the development of toddlers' self-regulation.
Early Childhood Research Quarterly. In Press, Uncorrected Proof,

Source: 

Topics: 

tags development: 

tags memworks: 

tags strategies: 

tags study: 

Damage to amygdala can be compensated by another region

September, 2010

A memory function thought to require a specific brain region called the amygdala has now been found to be able to be performed by another region, if the amygdala is impaired.

A number of studies in recent years have revealed the amazing ability of the human brain to compensate for damage down to its part. In the latest of these, it’s been found that loss of the amygdala doesn’t have to mean that new memories will be void of emotion. Instead, it appears, a region called the bed nuclei can step in to take its place. The bed nuclei are slower to process information than the amygdala, and in normal circumstances are inhibited by the amygdala. The study looked specifically at fear conditioning, for which the amygdala has been considered crucial.

The finding offers the hope that therapies to promote compensatory shifts in function might help those who have suffered damage to parts of their brain.

Reference: 

Source: 

Topics: 

tags: 

tags memworks: 

tags problems: 

Muted emotions misleading in Alzheimer's disease

August, 2010

Indications that blunted emotions are part of Alzheimer’s are a warning not to assume that reduced emotional response is a sign of depression.

A small study suggests that the apathy shown by many Alzheimer's patients may not simply be due to memory or language problems, but to a decreased ability to experience emotions. The seven patients were asked to rate pictures of positive and negative scenes (such as babies and spiders) by putting a mark closer or further to either a happy face or a sad face emoticon. Closeness to the face indicated the strength of the emotion felt. Although most of the time the Alzheimer’s patients placed their mark in the appropriate direction, they did make more inappropriate choices than the control group, and typically also gave less intense judgments.

Both comprehension problems and depression were ruled out. A lower emotional response may result from damage to brain areas that produce neurotransmitters, which typically occurs early in Alzheimer’s. It may be that medication to replace or increase these neurotransmitters would improve emotional experience.

This finding is a warning that apathy should not be automatically taken to mean that the patient is depressed. The researchers, enabled by the small size of the study, tested more thoroughly for depression than is usually the case in large studies. It may be that in these studies, this apathy has often been confounded with depression — which may explain the inconsistencies in the research into depression and Alzheimer’s (see the news item just previous to this).

The finding may also help caregivers understand that any emotional indifference is not ‘personal’.

Reference: 

[1674] Drago, V., Foster P. S., Chanei L., Rembisz J., Meador K., Finney G., et al.
(2010).  Emotional Indifference in Alzheimer's Disease.
J Neuropsychiatry Clin Neurosci. 22(2), 236 - 242.

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

Why older adults remember the good times better

March, 2010

An imaging study has found differences in brain activity that explain why older adults are better at remembering positive events.

An imaging study reveals why older adults are better at remembering positive events. The study, involving young adults (ages 19-31) and older adults (ages 61-80) being shown a series of photographs with positive and negative themes, found that while there was no difference in brain activity patterns between the age groups for the negative photos, there were age differences for the positive photos. In older adult brains, but not the younger, two emotion-processing regions (the ventromedial prefrontal cortex and the amygdala) strongly influenced the memory-encoding hippocampus.

Reference: 

Source: 

Topics: 

tags development: 

tags memworks: 

tags problems: 

Memory of emotions persist beyond memory of the event for memory-impaired

April, 2010

A study involving severe amnesiacs has found that induced feelings of happiness or sadness persist long after the memory of the event. The findings challenge the idea that by minimizing a specific memory of past trauma, associated sadness will also decrease, and also point to the need for care in dealing with those with impaired memory — don’t assume that any induced emotion will vanish as quickly as the memory of it.

A study involving five patients with severe amnesia due to damage in the hippocampus, resulting in a condition comparable to Alzheimer's, has found that memory tests given 5-10 minutes after sad and happy film clips showed little (if any) memory of the details, but the generated emotion lasted for 20 to 30 minutes afterward. Interestingly, normal controls also felt happy for about the same length of time, but the impact of sad scenes was shorter. The findings challenge the idea that by minimizing a specific memory of past trauma, associated sadness will also decrease. Indeed, it may be that forgetting the details of unhappy events prolongs the effects. The findings also point to the need for care in dealing with those with impaired memory — don’t assume that any induced emotion will vanish as quickly as their memory of it.

Reference: 

[471] Feinstein, J. S., Duff M. C., & Tranel D.
(2010).  Sustained experience of emotion after loss of memory in patients with amnesia.
Proceedings of the National Academy of Sciences. 107(17), 7674 - 7679.

Source: 

Topics: 

tags: 

tags memworks: 

Pages

Subscribe to RSS - emotion
Error | About memory

Error

The website encountered an unexpected error. Please try again later.