attention

Repeating aloud to another person boosts recall

  • The simple act of repeating something to another person helps you remember it, more than if you just repeated it to yourself.

A Canadian study involving French-speaking university students has found that repeating aloud, especially to another person, improves memory for words.

In the first experiment, 20 students read a series of words while wearing headphones that emitted white noise, in order to mask their own voices and eliminate auditory feedback. Four actions were compared:

  • repeating silently in their head
  • repeating silently while moving their lips
  • repeating aloud while looking at the screen
  • repeating aloud while looking at someone.

They were tested on their memory of the words after a distraction task. The memory test only required them to recognize whether or not the words had occurred previously.

There was a significant effect on memory. The order of the conditions matches the differences in memory, with memory worst in the first condition, and best in the last.

In the second experiment, 19 students went through the same process, except that the stimuli were pseudo-words. In this case, there was no memory difference between the conditions.

The effect is thought to be due to the benefits of motor sensory feedback, but the memory benefit of directing your words at a person rather than a screen suggests that such feedback goes beyond the obvious. Visual attention appears to be an important memory enhancer (no great surprise when we put it that way!).

Most of us have long ago learned that explaining something to someone really helps our own understanding (or demonstrates that we don’t in fact understand it!). This finding supports another, related, experience that most of us have had: the simple act of telling someone something helps our memory.

http://www.eurekalert.org/pub_releases/2015-10/uom-rat100615.php

Reference: 

tags memworks: 

Topics: 

tags strategies: 

Improve learning with co-occurring novelty

  • An animal study shows that following learning with a novel experience makes the learning stronger.
  • A human study shows that giving information positive associations improves your memory for future experiences with similar information.

We know that the neurotransmitter dopamine is involved in making strong memories. Now a mouse study helps us get more specific — and suggests how we can help ourselves learn.

The study, involving 120 mice, found that mice tasked with remembering where food had been hidden did better if they had been given a novel experience (exploring an unfamiliar floor surface) 30 minutes after being trained to remember the food location.

This memory improvement also occurred when the novel experience was replaced by the selective activation of dopamine-carrying neurons in the locus coeruleus that go to the hippocampus. The locus coeruleus is located in the brain stem and involved in several functions that affect emotion, anxiety levels, sleep patterns, and memory. The dopamine-carrying neurons in the locus coeruleus appear to be especially sensitive to environmental novelty.

In other words, if we’re given attention-grabbing experiences that trigger these LC neurons carrying dopamine to the hippocampus at around the time of learning, our memories will be stronger.

Now we already know that emotion helps memory, but what this new study tells us is that, as witness to the mice simply being given a new environment to explore, these dopamine-triggering experiences don’t have to be dramatic. It’s suggested that it could be as simple as playing a new video game during a quick break while studying for an exam, or playing tennis right after trying to memorize a big speech.

Remember that we’re designed to respond to novelty, to pay it more attention — and, it seems, that attention is extended to more mundane events that occur closely in time.

Emotionally positive situations boost memory for similar future events

In a similar vein, a human study has found that the benefits of reward extend forward in time.

In the study, volunteers were shown images from two categories (objects and animals), and were financially rewarded for one of these categories. As expected, they remembered images associated with a reward better. In a second session, however, they were shown new images of animals and objects without any reward. Participants still remembered the previously positively-associated category better.

Now, this doesn’t seem in any way surprising, but the interesting thing is that this benefit wasn’t seen immediately, but only after 24 hours — that is, after participants had slept and consolidated the learning.

Previous research has shown similar results when semantically related information has been paired with negative, that is, aversive stimuli.

https://www.eurekalert.org/pub_releases/2016-09/usmc-rim090716.php

http://www.eurekalert.org/pub_releases/2016-06/ibri-eps061516.php

Reference: 

Source: 

tags memworks: 

Topics: 

tags strategies: 

Digital media may be changing how you think

  • Reading from a screen may encourage users to focus on concrete details rather than more abstract thinking.

Four studies involving a total of more than 300 younger adults (20-24) have looked at information processing on different forms of media. They found that digital platforms such as tablets and laptops for reading may make you more inclined to focus on concrete details rather than interpreting information more abstractly.

As much as possible, the material was presented on the different media in identical format.

In the first study, 76 students were randomly assigned to complete the Behavior Identification Form on either an iPad or a print-out. The Form assesses an individual's current preference for concrete or abstract thinking. Respondents have to choose one of two descriptions for a particular behavior — e.g., for “making a list”, the choice of description is between “getting organized” or “writing things down”. The form presents 25 items.

There was a marked difference between those filling out the form on the iPad vs on a physical print-out, with non-digital users showing a significantly higher preference for abstract descriptions than digital users (mean of 18.56 vs 13.75).

In the other three studies, the digital format was always a PDF on a laptop. In the first of these, 81 students read a short story by David Sedaris, then answered 24 multichoice questions on it, of which half were abstract and half concrete. Digital readers scored significantly lower on abstract questions (48% vs 66%), and higher on concrete questions (73% vs 58%).

In the next study, 60 students studied a table of information about four, fictitious Japanese car models for two minutes, before being required to select the superior model. While one model was objectively superior in regard to the attributes and attribute rating, the amount of detail means (as previous research has shown) that those employing a top-down “gist” processing do better than those using a bottom-up, detail-oriented approach. On this problem, 66% of the non-digital readers correctly chose the superior model, compared to 43% of the digital readers.

In the final study, 119 students performed the same task as in the preceding study, but all viewed the table on a laptop. Before viewing the table, however, some were assigned to one of two priming activities: a high-level task aimed at activating more abstract thinking (thinking about why they might pursue a health goal), or a low-level task aimed at activating more concrete thinking (thinking about how to pursue the same goal).

Being primed to think more abstractly did seem to help these digital users, with 48% of this group correctly answering the car judgment problem, compared to only 25% of those given the concrete priming activity, and 30% of the control group.

I note that the performance of the control group is substantially below the performance of the digital users in the previous study, although there was no apparent change in the methodology. However, this was not noted or explained in the paper, so I don't know why this was. It does lead me not to put too much weight on this idea that priming can help.

However, the findings do support the view that reading on digital devices does encourage a more concrete style of thinking, reinforcing the idea that we are inclined to process information more shallowly when we read it from a screen.

Of course, this is, as the researchers point out, not an indictment. Sometimes, this is the best way to approach certain tasks. But what it does suggest is that we need to consider what sort of processing is desirable, and modify our strategy accordingly. For example, you may find it helpful to print out material that requires a high level of abstract thinking, particularly if your degree of expertise in the subject means that it carries a high cognitive load.

http://www.eurekalert.org/pub_releases/2016-05/dc-dmm050516.php

Reference: 

Kaufman, G., & Flanagan, M. (2016). High-Low Split : Divergent Cognitive Construal Levels Triggered by Digital and Non-digital Platforms. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1–5. doi:10.1145/2858036.2858550 http://dl.acm.org/citation.cfm?doid=2858036.2858550

Topics: 

tags study: 

tags memworks: 

tags strategies: 

How hard your brain works depends on the season

  • A small study shows that it's not only daily biological rhythms that affect brain activity, but longer seasonal ones also.

A sleep study involving 28 participants had them follow a controlled sleep/wake schedule for three weeks before staying in a sleep laboratory for 4.5 days, during which time they experienced a cycle of sleep deprivation and recovery in the absence of seasonal cues such as natural light, time information and social interaction. The same participants went through this entire procedure several times over some 18 months. Brain activity was assessed while participants undertook an n-back working memory task, and a task that tested sustained attention.

While performance on these tasks didn't change with the seasons, the amount of effort needed to accomplish them did. Brain activity involved in sustained attention (especially in the thalamus, amygdala and hippocampus) was highest in the summer and lowest in the winter. Brain activity associated with working memory (especially the pulvinar, insula, prefrontal and frontopolar regions), was higher in the fall and lower in the spring.

Seasonality, therefore, could be one factor in cognitive differences that occur for an individual tested at different times.

The finding is consistent with previous research showing seasonal variation in the levels and concentrations of certain compounds associated with mood (including dopamine and serotonin).

Participants were healthy young adults; it would be interesting to see if the same results are found in older adults. It's possible that the effects are greater.

http://www.scientificamerican.com/article/brain-activity-for-attention-and-memory-tasks-changes-with-the-seasons/

Reference: 

[4059] Meyer C, Muto V, Jaspar M, Kussé C, Lambot E, Chellappa SL, Degueldre C, Balteau E, Luxen A, Middleton B, et al. Seasonality in human cognitive brain responses. Proceedings of the National Academy of Sciences [Internet]. 2016 :201518129. Available from: http://www.pnas.org/content/early/2016/02/04/1518129113

tags lifestyle: 

Topics: 

tags memworks: 

Movie study confirms older people are more distractible

Idiosyncratic brain activity among older people watching a thriller-type movie adds to evidence that:

  • age may affect the ability to perceive and remember the order of events (explaining why older adults may find it harder to follow complex plots)
  • age affects the ability to focus attention and not be distracted
  • age affects the brain's connectivity — how well connected regions work together.

A study involving 218 participants aged 18-88 has looked at the effects of age on the brain activity of participants viewing an edited version of a 1961 Hitchcock TV episode (given that participants viewed the movie while in a MRI machine, the 25 minute episode was condensed to 8 minutes).

While many studies have looked at how age changes brain function, the stimuli used have typically been quite simple. This thriller-type story provides more complex and naturalistic stimuli.

Younger adults' brains responded to the TV program in a very uniform way, while older adults showed much more idiosyncratic responses. The TV program (“Bang! You're dead”) has previously been shown to induce widespread synchronization of brain responses (such movies are, after all, designed to focus attention on specific people and objects; following along with the director is, in a manner of speaking, how we follow the plot). The synchronization seen here among younger adults may reflect the optimal response, attention focused on the most relevant stimulus. (There is much less synchronization when the stimuli are more everyday.)

The increasing asynchronization with age seen here has previously been linked to poorer comprehension and memory. In this study, there was a correlation between synchronization and measures of attentional control, such as fluid intelligence and reaction time variability. There was no correlation between synchronization and crystallized intelligence.

The greatest differences were seen in the brain regions controlling attention (the superior frontal lobe and the intraparietal sulcus) and language processing (the bilateral middle temporal gyrus and left inferior frontal gyrus).

The researchers accordingly suggested that the reason for the variability in brain patterns seen in older adults lies in their poorer attentional control — specifically, their top-down control (ability to focus) rather than bottom-up attentional capture. Attentional capture has previously been shown to be well preserved in old age.

Of course, it's not necessarily bad that a watcher doesn't rigidly follow the director's manipulation! The older adults may be showing more informed and cunning observation than the younger adults. However, previous studies have found that older adults watching a movie tend to vary more in where they draw an event boundary; those showing most variability in this regard were the least able to remember the sequence of events.

The current findings therefore support the idea that older adults may have increasing difficulty in understanding events — somthing which helps explain why some old people have increasing trouble following complex plots.

The findings also add to growing evidence that age affects functional connectivity (how well the brain works together).

It should be noted, however, that it is possible that there could also be cohort effects going on — that is, effects of education and life experience.

http://www.eurekalert.org/pub_releases/2015-08/uoc-ymt081415.php

Reference: 

Topics: 

tags problems: 

tags development: 

tags memworks: 

Implementation plans help those with low working memory capacity

  • Implementation plans are a strategy for helping you remember your intended future actions.
  • College students with low WMC performed a prospective memory task at the same level as those with a higher WMC, but only when they used a simple implementation plan.

I've written at length about implementation plans in my book “Planning to Remember: How to Remember What You're Doing and What You Plan to Do”. Essentially, they're intentions you make in which you explicitly tie together your intended action with a specific situational cue (such as seeing a post box).

A new study looked at the benefits of using an implementation intention for those with low working memory capacity.

The study involved 100 college students, of whom half were instructed to form an implementation intention in the event-based prospective memory task. The task was in the context of a lexical decision task in which the student had to press a different key depending on whether a word or a pseudo-word was presented, and to press the spacebar when a waiting message appeared between each trial. However (and this is the prospective element), if they saw one of four cue words, they were to stop doing the lexical task and say aloud both the cue word and its associated target word. They were then given the four word pairs to learn.

After they had mastered the word pairs, students in the implementation intention group were also given various sentences to say aloud, of the form: “When I see the word _______ (hotel, eraser, thread, credit) while making a word decision, I will stop doing the lexical decision task and call out _____-______ (hotel-glass, eraser-pencil, thread-book, credit-card) to the experimenter during the waiting message.” They said each sentence (relating to each word pair) twice.

Both groups were given a 5-minute survey to fill out before beginning the trials. At the end of the trials, their working memory was assessed using both the Operation Span task and the Reading Span task.

Overall, as expected, the implementation intention group performed significantly better on the prospective memory task. Unlike other research, there was no significant effect of working memory capacity on prospective memory performance. But this is because other studies haven't used implementation intentions — among those who made no such implement plans, low working memory capacity did indeed negatively affect prospective memory performance. However, those with low working memory capacity did just as well as those with high WMC when they formed implementation intentions (in fact, they did slightly better).

The most probable benefit of the strategy is that it heightened sensitivity to the event cues, something which is of particular value to those with low working memory capacity, who by definition have poorer attentional control.

It should be noted that this was an attentionally demanding task — there is some evidence that working memory ability only relates to prospective memory ability when the prospective memory task requires a high amount of attentional demand. But what constitutes “attentionally demanding” varies depending on the individual.

Perhaps this bears on evidence suggesting that a U-shaped function might apply, with a certain level of cognitive ability needed to benefit from implementation intentions, while those above a certain level find them unnecessary. But again, this depends on how attentionally demanding the task is. We can all benefit from forming implementation intentions in very challenging situations. It should also be remembered that WMC is affected not only more permanently by age, but also more temporarily by stress, anxiety, and distraction.

Of course, this experiment framed the situation in a very short-term way, with the intentions only needing to be remembered for about 15 minutes. A more naturalistic study is needed to confirm the results.

Reference: 

tags memworks: 

Topics: 

Attention Differences

Attention differences between individuals and ages

Older news items (pre-2010) brought over from the old website

When less attention improves behavior

An intriguing finding from a new study with confabulating patients has found that, unlike with normal individuals, or indeed other patients with damaged prefrontal lobes who don’t confabulate, memory accuracy improves when attention is reduced. It appears that lack of attention during memory retrieval is not the reason for confabulation; instead the problem might lie in over-processing irrelevant information. Training such patients to double-check the accuracy of their memories may not therefore be useful; instead they should be trained not to give too much attention to events.

[595] Ciaramelli E, Ghetti S, Borsotti M. Divided attention during retrieval suppresses false recognition in confabulation. Cortex [Internet]. 2009 ;45(2):141 - 153. Available from: http://www.sciencedirect.com/science/article/B8JH1-4RS9SWP-1/2/9ee1c848cc3012dc9267330429e0c0d0

http://www.eurekalert.org/pub_releases/2009-01/e-wla012109.php

Children's under-achievement could be down to poor working memory

A survey of over three thousand children has found that 10% of school children across all age ranges suffer from poor working memory seriously affecting their learning. However, poor working memory is rarely identified by teachers, who often describe children with this problem as inattentive or as having lower levels of intelligence. The researchers have developed a new tool, a combination of a checklist and computer programme called the Working Memory Rating Scale, that enables teachers to identify and assess children's memory capacity in the classroom from as early as four years old. The tool has already been piloted successfully in 35 schools across the UK, and is now widely available. It has been translated into ten foreign languages.
http://www.physorg.com/news123404466.html 
http://www.eurekalert.org/pub_releases/2008-02/du-cuc022608.php

Changes in brain, not age, determine one's ability to focus on task

It’s been established that one of the reasons why older adults may do less well on cognitive tasks is because they have greater difficulty in ignoring distractions, which impairs their concentration. But not all older people are afflicted by this. Some are as focused as young adults. An imaging study has now revealed a difference between the brains of those people who are good at focusing, and those who are poor. Those who have difficulty screening out distractions have less white matter in the frontal lobes. They activated neurons in the left frontal lobe as well as the right. Young people and high-functioning older adults tended to use only the right frontal lobe.

[1117] Colcombe SJ, Kramer AF, Erickson KI, Scalf P. The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychology and Aging [Internet]. 2005 ;20(3):363 - 375. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16248697

http://www.eurekalert.org/pub_releases/2005-10/uoia-cib102605.php

Memory loss in older adults due to distractions, not inability to focus

We know that older adults often have short-term memory problems, and this has been linked to problems with attention. An imaging study now provides evidence that these short-term memory problems are associated with an inability to filter out surrounding distractions, rather than problems with focusing attention. It’s been suggested that an inability to ignore distracting information may indeed be at the heart of many of the cognitive problems that accompany aging. It should be noted that this is not an inevitable effect of age — in the study, 6 of the 16 older adults involved had no problems with short-term memory or attention.

[383] Gazzaley A, Cooney JW, Rissman J, D'Esposito M. Top-down suppression deficit underlies working memory impairment in normal aging. Nat Neurosci [Internet]. 2005 ;8(10):1298 - 1300. Available from: http://dx.doi.org/10.1038/nn1543

http://www.eurekalert.org/pub_releases/2005-09/uoc--mli090805.php

Insight into the processes of 'positive' and 'negative' learners

An intriguing study of the electrical signals emanating from the brain has revealed two types of learners. A brainwave event called an "event-related potential" (ERP) is important in learning; a particular type of ERP called "error-related negativity" (ERN), is associated with activity in the anterior cingulate cortex. This region is activated during demanding cognitive tasks, and ERNs are typically more negative after participants make incorrect responses compared to correct choices. Unexpectedly, studies of this ERN found a difference between "positive" learners, who perform better at choosing the correct response than avoiding the wrong one, and "negative" learners, who learn better to avoid incorrect responses. The negative learners showed larger ERNs, suggesting that "these individuals are more affected by, and therefore learn more from, their errors.” Positive learners had larger ERNs when faced with high-conflict win/win decisions among two good options than during lose/lose decisions among two bad options, whereas negative learners showed the opposite pattern.

[818] Frank MJ, Woroch BS, Curran T. Error-Related Negativity Predicts Reinforcement Learning and Conflict Biases. Neuron [Internet]. 2005 ;47(4):495 - 501. Available from: http://www.cell.com/neuron/abstract/S0896-6273(05)00526-X

http://www.eurekalert.org/pub_releases/2005-08/cp-iit081205.php

Teen's ability to multi-task develops late in adolescence

A study involving adolescents between 9 and 20 years old has found that the ability to multi-task continues to develop through adolescence. The ability to use recall-guided action to remember single pieces of spatial information (such as looking at the location of a dot on a computer screen, then, after a delay, indicating where the dot had been) developed until ages 11 to 12, while the ability to remember multiple units of information in the correct sequence developed until ages 13 to 15. Tasks in which participants had to search for hidden items in a manner requiring a high level of multi-tasking and strategic thinking continued to develop until ages 16 to 17. "These findings have important implications for parents and teachers who might expect too much in the way of strategic or self-organized thinking, especially from older teenagers."

[547] Luciana M, Conklin HM, Hooper CJ, Yarger RS. The Development of Nonverbal Working Memory and Executive Control Processes in Adolescents. Child Development. 2005 ;76(3):697 - 712.

http://www.eurekalert.org/pub_releases/2005-05/sfri-tat051205.php

Development of working memory with age

An imaging study of 20 healthy 8- to 30-year-olds has shed new light on the development of working memory. The study found that pre-adolescent children relied most heavily on the prefrontal and parietal regions of the brain during the working memory task; adolescents used those regions plus the anterior cingulate; and in adults, a third area of the brain, the medial temporal lobe, was brought in to support the functions of the other areas. Adults performed best. The results support the view that a person's ability to have voluntary control over behavior improves with age because with development, additional brain processes are used.

The findings were presented at the 2004 Annual Meeting of the Society for Neuroscience.

http://www.eurekalert.org/pub_releases/2004-10/uopm-dow102104.php

tags memworks: 

Attention Training

See also

Meditation (which is in fact the main category of attention training!)

Nature (one of the best ways of 'refreshing' your attention)

Older news items (pre-2010) brought over from the old website

Music training helps you hear better in noisy rooms

I’ve often talked about the benefits of musical training for cognition, but here’s a totally new benefit. A study involving 31 younger adults (19-32) with normal hearing has found that musicians (at least 10 years of music experience; music training before age 7; practicing more than 3 times weekly within previous 3 years) were significantly better at hearing and repeating sentences in increasingly noisy conditions, than the non-musicians. The number of years of music practice also correlated positively with better working memory and better tone discrimination ability. Hearing speech in noisy environments is of course difficult for everyone, but particularly for older adults, who are likely to have hearing and memory loss, and for poor readers.

[960] Parbery-Clark A, Skoe E, Lam C, Kraus N. Musician enhancement for speech-in-noise. Ear and Hearing [Internet]. 2009 ;30(6):653 - 661. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19734788

http://www.eurekalert.org/pub_releases/2009-08/nu-tum081709.php

Meditation technique can temporarily improve visuospatial abilities

And continuing on the subject of visual short-term memory, a study involving experienced practitioners of two styles of meditation: Deity Yoga (DY) and Open Presence (OP) has found that, although meditators performed similarly to nonmeditators on two types of visuospatial tasks (mental rotation and visual memory), when they did the tasks immediately after meditating for 20 minutes (while the nonmeditators rested or did something else), practitioners of the DY style of meditation showed a dramatic improvement compared to OP practitioners and controls. In other words, although the claim that regular meditation practice can increase your short-term memory capacity was not confirmed, it does appear that some forms of meditation can temporarily (and dramatically) improve it. Since the form of meditation that had this effect was one that emphasizes visual imagery, it does support the idea that you can improve your imagery and visual memory skills (even if you do need to ‘warm up’ before the improvement is evident).

[860] Kozhevnikov M, Louchakova O, Josipovic Z, Motes MA. The enhancement of visuospatial processing efficiency through Buddhist Deity meditation. Psychological Science: A Journal of the American Psychological Society / APS [Internet]. 2009 ;20(5):645 - 653. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19476594

http://www.sciencedaily.com/releases/2009/04/090427131315.htm
http://www.eurekalert.org/pub_releases/2009-04/afps-ssb042709.php

A walk in the park a day keeps mental fatigue away

Many of us who work indoors are familiar with the benefits of a walk in the fresh air, but a new study gives new insight into why, and how, it works. In two experiments, researchers found memory performance and attention spans improved by 20% after people spent an hour interacting with nature. The intriguing finding was that this effect was achieved not only by walking in the botanical gardens (versus walking along main streets of Ann Arbor), but also by looking at photos of nature (versus looking at photos of urban settings). The findings are consistent with a theory that natural environments are better at restoring attention abilities, because they provide a more coherent pattern of stimulation that requires less effort, as opposed to urban environments that are provide complex and often confusing stimulation that captures attention dramatically and requires directed attention (e.g., to avoid being hit by a car).

[279] Berman MG, Jonides J, Kaplan S. The cognitive benefits of interacting with nature. Psychological Science: A Journal of the American Psychological Society / APS [Internet]. 2008 ;19(12):1207 - 1212. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19121124

http://www.eurekalert.org/pub_releases/2008-12/afps-awi121808.php
http://www.physorg.com/news148663388.html

Even toddlers can ‘chunk' information for better remembering

We all know it’s easier to remember a long number (say a phone number) when it’s broken into chunks. Now a study has found that we don’t need to be taught this; it appears to come naturally to us. The study showed 14 months old children could track only three hidden objects at once, in the absence of any grouping cues, demonstrating the standard limit of working memory. However, with categorical or spatial cues, the children could remember more. For example, when four toys consisted of two groups of two familiar objects, cats and cars, or when six identical orange balls were grouped in three groups of two.

[196] Feigenson L, Halberda J. From the Cover: Conceptual knowledge increases infants' memory capacity. Proceedings of the National Academy of Sciences [Internet]. 2008 ;105(29):9926 - 9930. Available from: http://www.pnas.org/content/early/2008/07/11/0709884105.abstract

http://www.eurekalert.org/pub_releases/2008-07/jhu-etg071008.php

Full text available at http://www.pnas.org/content/105/29/9926.abstract?sid=c01302b6-cd8e-4072-842c-7c6fcd40706f

Brain-training to improve working memory boosts fluid intelligence

General intelligence is often separated into "fluid" and "crystalline" components, of which fluid intelligence is considered more reflective of “pure” intelligence (for more on this, see my article at http://www.memory-key.com//memory/individual/wm-intelligence), and largely resistant to training and learning effects. However, in a new study in which participants were given a series of training exercises designed to improve their working memory, fluid intelligence was found to have significantly improved, with the amount of improvement increasing with time spent training. The small study contradicts decades of research showing that improving on one kind of cognitive task does not improve performance on other kinds, so has been regarded with some skepticism by other researchers. More research is definitely needed, but the memory task did differ from previous studies, engaging executive functions such as those that inhibit irrelevant items, monitor performance, manage two tasks simultaneously, and update memory.

[1183] Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ. From the Cover: Improving fluid intelligence with training on working memory. Proceedings of the National Academy of Sciences [Internet]. 2008 ;105(19):6829 - 6833. Available from: http://www.pnas.org/content/early/2008/04/25/0801268105.abstract

http://www.physorg.com/news128699895.html
http://www.sciam.com/article.cfm?id=study-shows-brain-power-can-be-bolstered

Teaching older brains to regain youthful skills

Researchers have succeeded in training seniors to multitask at the same level as younger adults. Over the course of two weeks, both younger and older subjects learned to identify a letter flashed quickly in the middle of a computer screen and simultaneously localize the position of a spot flashed quickly in the periphery as well as they could perform either task on its own. The older adults did take longer than the younger adults to reach the same level of performance, but they did reach it.

[571] Richards E, Bennett PJ, Sekuler AB. Age related differences in learning with the useful field of view. Vision Research [Internet]. 2006 ;46(25):4217 - 4231. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17027061

http://www.eurekalert.org/pub_releases/2006-10/mu-yct100206.php

Novelty aids learning

We’ve long suspected that the human brain is particularly attracted to new information. Research now reveals that the brain region that regulates our levels of motivation and our ability to predict rewards, by releasing dopamine in the frontal and temporal regions of the brain, responds better to novelty than to the familiar. Behavioral experiments also revealed that participants best remembered the images they had been shown when new images were mixed in with slightly familiar images during learning. It’s worth noting that this midbrain area (substantia nigra/ventral tegmentum) responded strongly only to completely new stimuli.

[1113] Bunzeck N, Duzel E. Absolute Coding of Stimulus Novelty in the Human Substantia Nigra/VTA. Neuron [Internet]. 2006 ;51(3):369 - 379. Available from: http://www.cell.com/neuron/abstract/S0896-6273(06)00475-2

http://www.eurekalert.org/pub_releases/2006-08/ucl-nal073106.php

Support for labeling as an aid to memory

A study involving an amnesia-inducing drug has shed light on how we form new memories. Participants in the study participants viewed words, photographs of faces and landscapes, and abstract pictures one at a time on a computer screen. Twenty minutes later, they were shown the words and images again, one at a time. Half of the images they had seen earlier, and half were new. They were then asked whether they recognized each one. For one session they were given midazolam, a drug used to relieve anxiety during surgical procedures that also causes short-term anterograde amnesia, and for one session they were given a placebo.
It was found that the participants' memory while in the placebo condition was best for words, but the worst for abstract images. Midazolam impaired the recognition of words the most, impaired memory for the photos less, and impaired recognition of abstract pictures hardly at all. The finding reinforces the idea that the ability to recollect depends on the ability to link the stimulus to a context, and that unitization increases the chances of this linking occurring. While the words were very concrete and therefore easy to link to the experimental context, the photographs were of unknown people and unknown places and thus hard to distinctively label. The abstract images were also unfamiliar and not unitized into something that could be described with a single word.

[1216] Reder LM, Oates JM, Thornton ER, Quinlan JJ, Kaufer A, Sauer J. Drug-Induced Amnesia Hurts Recognition, but Only for Memories That Can Be Unitized. Psychological science : a journal of the American Psychological Society / APS. 2006 ;17(7):562 - 567.

http://www.sciencedaily.com/releases/2006/07/060719092800.htm

Language cues help visual learning in children

A study of 4-year-old children has found that language, in the form of specific kinds of sentences spoken aloud, helped them remember mirror image visual patterns. The children were shown cards bearing red and green vertical, horizontal and diagonal patterns that were mirror images of one another. When asked to choose the card that matched the one previously seen, the children tended to mistake the original card for its mirror image, showing how difficult it was for them to remember both color and location. However, if they were told, when viewing the original card, a mnemonic cue such as ‘The red part is on the left’, they performed “reliably better”.

The paper was presented by a graduate student at the 17th annual meeting of the American Psychological Society, held May 26-29 in Los Angeles.

http://www.eurekalert.org/pub_releases/2005-05/jhu-lc051705.php

Cognitive therapy for ADHD

A researcher that has previously demonstrated that working memory capacity can be increased through training, has now reported that the training software has produced significant improvement in children with ADHD — a disability that is associated with deficits in working memory. The study involved 53 children with ADHD, aged 7-12, who were not on medication for their disability. 44 of these met the criterion of more than 20 days of training. Half the participants were assigned to the working memory training program and the other half to a comparison program. 60% of those who underwent the wm training program no longer met the clinical criteria for ADHD after five weeks of training. The children were tested on visual-spatial memory, which has the strongest link to inattention and ADHD. Further research is needed to show that training improves ability on a wider range of tasks.

[583] Klingberg T, Fernell E, Olesen PJ, Johnson M, Gustafsson P, Dahlström K, Gillberg CG, Forssberg H, Westerberg H. Computerized Training of Working Memory in Children With ADHD-A Randomized, Controlled Trial. Journal of the American Academy of Child & Adolescent Psychiatry [Internet]. 2005 ;44(2):177 - 186. Available from: http://www.sciencedirect.com/science/article/B987N-4XKH91F-B/2/44e91ac6d66cbd1822ee93ad0b14ec59

http://www.sciam.com/article.cfm?articleID=000560D5-7252-12B9-9A2C83414B7F0000&sc=I100322

Training improves working memory capacity

Working memory capacity has traditionally been thought to be constant. Recent studies, however, suggest that working memory can be improved by training. In this recent imaging study, it was found that adults who practiced working memory tasks for 5 weeks showed increased brain activity in the middle frontal gyrus and superior and inferior parietal cortices. These changes could be evidence of training-induced plasticity in the neural systems that underlie working memory.

[606] Olesen PJ, Westerberg H, Klingberg T. Increased prefrontal and parietal activity after training of working memory. Nat Neurosci [Internet]. 2004 ;7(1):75 - 79. Available from: http://dx.doi.org/10.1038/nn1165

http://www.nature.com/cgi-taf/DynaPage.taf?file=/neuro/journal/v7/n1/abs/nn1165.html

Children who concentrate and switch attention better are more likely to cross streets safely

How can we help kids cross streets more safely? Improving their abilities to concentrate and switch their attention may be part of the answer. British psychologists studied these two central attentional skills in children ages four to 10 in relation to how safely they crossed the street. The results suggest that children who can concentrate and switch their attention better may cross more safely. The study used a computer game to gauge the “attention switching” skills of 101 children. Distractability and impulsivity were also measured, in a representative sample of 35 children. These 35 children were then covertly videotaped crossing streets (with their parents). Attentional skills significantly correlated with pedestrian behavior, in different ways. Children who were better at switching attention on the Frog Game were more likely to look at traffic when about to cross a road. Children who were less able to concentrate in the lab when challenged by a distraction also tended to be more impulsive; children rated as more impulsive tended to cross the road in a less controlled way. The biggest improvements seemed to come between the group of four-five year olds and the group of five-six year olds, the difference between preschool and kindergarten age. Finally, concentration, but not switching, correlated with impulsivity, suggesting that these two skills (concentration and attention switching) represent distinct aspects of attention.

[385] Dunbar G, Hill R, Lewis V. Children's attentional skills and road behavior. Journal of Experimental Psychology. Applied [Internet]. 2001 ;7(3):227 - 234. Available from: http://www.ncbi.nlm.nih.gov/pubmed/11676101

http://www.eurekalert.org/pub_releases/2001-09/apa-cwc091001.php

Skill-specific exercises better for people who suffer from attention problems following stroke or brain injury

Treatment programs for people who suffer from attention problems following a stroke or other traumatic brain injuries often involve abstract cognitive exercises designed to directly restore impaired attention processes. But a review of 30 studies involving a total of 359 participants shows that an alternative and lesser-used therapy that teaches patients to relearn the tasks that affect their daily lives the most may be more effective. In this specific skills approach, people with brain damage learn to perform attention skills in a way that is different from non-brain-damaged people. In one study, for example, participants whose brain injuries affected their ability to drive a car used small electric cars in the lab to practice specific driving exercises, such as steering between pylons that were moved closer and closer together. Those that practiced specific exercises showed substantial improvement on a variety of driving related tasks compared to those who drove the car, but did not practice the exercises.

[2548] Park NW, Ingles JL. Effectiveness of attention rehabilitation after an acquired brain injury: A meta-analysis. Neuropsychology [Internet]. 2001 ;15(2):199 - 210. Available from: http://psycnet.apa.org/journals/neu/15/2/199/

http://www.eurekalert.org/pub_releases/2001-04/APA-Rlsm-0704101.php

tags memworks: 

tags strategies: 

Attention warps memory space

A recent study reveals that when we focus on searching for something, regions across the brain are pulled into the search. The study sheds light on how attention works.

In the experiments, brain activity was recorded as participants searched for people or vehicles in movie clips. Computational models showed how each of the roughly 50,000 locations near the cortex responded to each of the 935 categories of objects and actions seen in the movie clips.

05/2013

tags memworks: 

Mynd: 

Pages

Subscribe to RSS - attention